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Abstract

In this thesis, the implications of the existence of Killing spinors in a spacetime are
investigated. In particular, it is shown that in vacuum and electrovacuum spacetimes
a Killing spinor, along with some assumptions on the associated Killing vector in an
asymptotic region, guarantees that the spacetime is locally isometric to a member of the
Kerr or Kerr-Newman family. It is shown that the characterisation of these spacetimes
in terms of Killing spinors is an alternative expression of characterisation results of
Mars (Kerr) and Wong (Kerr-Newman) involving restrictions on the Weyl curvature and

matter content.

In the next section, the construction of a geometric invariant characterising initial data
for the Kerr-Newman spacetime is described. This geometric invariant vanishes if and
only if the initial data set corresponds to exact Kerr-Newman initial data, and so char-
acterises this type of data. First, the characterisation of the Kerr-Newman spacetime in
terms of Killing spinors is illustrated. The space spinor formalism is then used to obtain
a set of four independent conditions on an initial Cauchy hypersurface that guarantee
the existence of a Killing spinor on the development of the initial data. Following a sim-
ilar analysis in the vacuum case, the properties of solutions to the approximate Killing

spinor equation are studied, and used to construct the geometric invariant.

Finally, the problem of Killing spinor initial data in the characteristic problem is investi-
gated. It is shown that data need only be specified on the bifurcation surface of the two
intersecting null hypersurfaces in order to guarantee the existence of a Killing spinor in
a neighbourhood of the bifurcation surface. This characterises the class of spacetimes
known as distorted black holes, which include but is strictly larger than the Kerr family

of spacetimes.
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Chapter 1

Background

1.1 The Einstein equations

The theory of general relativity is a mathematical model of gravity, where the system of

consideration is represented by a spacetime. This consists of a pair (M, g), containing:
1. A differentiable manifold M:

A differentiable manifold is a Hausdorff, paracompact topological space M, together

with a collection of charts {U;,1);} containing open sets U; of M, which satisfy:
(a) M =, U; (the sets cover M).

(b) For all i, there exists a bijection ; : U; — V;, where V; is some open subset

of R™.

(c) IfUiNU; # ), then the transition maps 1b; 0ty ' from 1; (U NU;) to v, (U NU;)

are continuously differentiable.

The manifold is k-differentiable if the transition maps are k-times continuously

differentiable, and smooth if the transition maps are infinitely differentiable. The

10
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manifolds considered in this thesis will be assumed to be smooth and 4-dimensional.
2. A Lorentzian metric field g:

Consider the space of tangent vectors to smooth curves v : M — R passing through
p € M. These are defined as linear maps from the space of smooth functions on
M to R, given by:

Xp(f) == = (f(7(1))) le=0-

It can be shown that this forms a vector space at p, called the tangent space T, M.

Then, the metric at p is a multilinear map:
g: TyM xTyM — R

that is symmetric (¢(X,Y) = ¢(Y, X)) and non-degenerate (g(X,Y) = 0 for all
Y € T,M if and only if X = 0). It is often represented in component form as
a real n by n matrix. As a real symmetric matrix, it is diagonalisable, with the
eigenvalues of g on the diagonal; non-degeneracy ensures all of these eigenvalues
are non-zero. The signature of g is defined by the number of positive and negative
eigenvalues; in 4-dimensional general relativity, we consider Lorentzian metrics,
with one positive and 3 negative eigenvalues, denoted (+ — ——) (it is common for
the signature to be defined to be (— + ++), but we will keep the ‘mostly-minus’
convention in order to be consistent with the spinor formalism discussed later). A
Lorentzian metric field is a smooth choice of Lorentzian metric g, at every point
p € M (i.e. such that the map p — ¢,(X|p,Y|p) is a smooth function of p for all
smooth vector fields X,Y € T'M, the tangent bundle of M).

Furthermore, a spacetime metric is required to satisfy the Einstein equations:
) 1
Ric[g] — §R[g] g = 8T

where Ric[g] is the Ricci curvature tensor of g, R[g] is the Ricci scalar (the trace of
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the Ricci tensor) and T is the energy-momentum tensor, describing the distribution of
matter and energy in the spacetime.

Remark 1. Using index notation, this equation can be written
1
Rap — §R Gab = 8Ty

We will use the Einstein summation convention (for both tensor and spinor indices)
throughout this thesis.
Remark 2. A symmetry of the Riemann curvature tensor known as the Bianchi identity

gives rise to the conservation of energy-momentum:
Ve =0

This can also be interpreted as providing the equations of motion for the matter content

of the spacetime.

In this thesis, we will be considering two choices of energy-momentum tensor: first

the vacuum choice, T,; = 0, in which case the Einstein equations reduce to:
Ry =0

and secondly the electrovacuum choice, describing a spacetime containing only electro-

magnetic fields, where the energy momentum tensor takes the form

1 1
Tab = 7 Fachc - ZgachdFCd)-

Here, F,;, is the Faraday tensor, completely determined by the electric and magnetic
vector fields E and B (upon choice of a timelike vector u®). The conservation of energy-
momentum gives rise to the Maxwell equations, and the Einstein equations restricted to
this choice of energy-momentum tensor are referred to as the Finstein-Mazwell equations,

and reduce to the vacuum Einstein equations when the electromagnetic fields vanish.
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1.2 The Kerr-Newman solution

1.2.1 The Kerr-Newman metric and its properties

Solutions to the full Einstein-Maxwell equations are in general hard to find; they consist
of a system of multi-dimensional, coupled partial differential equations, and so currently
known exact solutions in general assume restrictions such as symmetries or algebraic
speciality. For example, the Schwarzschild solution was one of the first non-trivial exact
solutions to the vacuum Einstein equations to be found, under the assumption of spherical

symmetry, in [52] (and is the unique such spacetime due to Birkhoff’s theorem, see [13]).

The Schwarzschild solution is now understood to represent the gravitational field of
a spherically symmetric and stationary black hole; it possesses a curvature singularity
at area radius r = 0, and an event horizon at r = 2M, where M is the mass parameter
of the solution. However, it is not believed to be an accurate description of a physical
black hole, which is expected to have a non-zero angular momentum J which breaks the
assumption of spherical symmetry. Thus, after discovery of the Schwarzschild solution in
1916, there was significant effort to find a generalisation possessing angular momentum.
The search took considerably longer than expected, but such a solution was finally found
by Kerr in 1963 [36], now called the Kerr solution and expressed here in Boyer-Lindquist
coordinates (t,7,0,¢):
A-asinf a;SiHZ Hdt2 — 2asin® 977“2 +a; -4

2 422 _ Ag2 sin? >
(r+a7) =  sin? 04" + S dr? + 3o

ds? = — dtdo (1.1)

where ¥ = 72 + a®?cos?6 and A = r? — 2Mr + a®. The solution possesses a number of

properties desirable for describing a rotating black hole:
e The solution is stationary and axisymmetric (admits the two Killing vectors 0y, 0y).

e The solution depends on 2 parameters M, a, determining the mass (M) and angular
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momentum (J = alM) of the black hole. Therefore, (|1.1)) actually represents a
family of vacuum solutions, referred to as the Kerr family; however, for simplicity
one often uses the Kerr solution to refer to a member of this family, or as referring

to the family as a whole.

e In the limit r — oo, the metric reduces to the Minkowski metric, i.e. the solution

is asymptotically flat.

e When the rotation parameter a is set to zero, the metric reduces to the Schwarzschild

metric.

e There is a curvature singularity at » = 0, and an event horizon at r = M +

VM2 — a2

e Like the Schwarzschild solution, the Kerr solution has 2 asymptotically flat ends
(see section for the full definition), but it can also be extended to asymptotically
flat regions to the past and future of the singularity. However, generically rotating
black holes are expected to exhibit singular behaviour along the Cauchy horizon
(the boundary of the globally hyperbolic region of the spacetime — see section ,
providing confirmation of the strong cosmic censorship hypothesis. Justification for
the inextendibility of the metric past the Cauchy horizon in a sufficiently regular
way is given in [2I]; there, it is shown that although the metric can be extended
across the Cauchy horizon as a CY field, it generically exhibits a “weak null sin-
gularity” (for example, preventing extendibility as a C? metric). Thus, a modified

version of the strong cosmic censorship hypothesis is preserved.

This vacuum solution can be extended to a solution to the Einstein-Maxwell equations
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in a straightforward way, called the Kerr-Newman solution:

A — a?sin26 r24+a?2 - A

ds? = — S dt? — 2asin? 6 S dtde
2 2)2 _ Ag2sin2 6 >
(r+a’) . @3 7 Gin? 6d6” + S dr® + Dd6> (1.2)
A Qr(dt — asin® 6d¢)
T )

where ¥ = 72 + a?cos?0, A = 1?2 — 2Mr + a® + Q?, and the Faraday tensor F' of the
solution is the exterior derivative of the electromagnetic 4-potential, ' = dA. The
solution now depends on 3 parameters (M, a, @), with the new parameter @) having the
interpretation of electric charge. The expression for the 4-potential A is not unique —
the gauge transformation A — A 4 dy for an arbitrary scalar field x preserves the value
of the Faraday tensor, and so is a solution to the Einstein-Maxwell equations with the
same metric; It is clear that the Kerr-Newman solution reduces to the Kerr solution
when @ = 0, and it possesses many of the same physical properties as the Kerr solution.
Although the Kerr-Newman solution is a solution to a more general set of equations, in
reality we expect to only observe Kerr black holes in the universe - charged black holes
would attract matter of the opposite charge, thereby reducing the charge of the black

hole to zero, over a short time frame.

1.2.2 The Carter constant and hidden symmetries

As mentioned above, each member of the Kerr-Newman family admits two Killing vec-
tors, representing two isometries of the spacetime. These vectors are 0;, representing sta-
tionarity, and Oy, representing axisymmetry. A consequence of the existence of these two
symmetries is the existence of conserved quantities for observers moving along geodesics.

Explicitly, if X is the tangent vector to a geodesic of a Kerr-Newman spacetime, then
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the quantities

E = g X" (0,)

L= gabXa(a¢)b

are conserved along the geodesic. Along with the Hamiltonian H = ¢, X*X? of the
particle (determined by the particle’s mass), this provides 3 conserved quantities for an

observer moving along a geodesic.

This falls short of the 4 conserved quantities needed, in the special case of a 4-
dimensional spacetime, to allow the geodesic equation to be completely integrated. How-
ever, an interesting property of the Kerr-Newman metric is the existence of a further
conserved quantity, known as the Carter constant (found by Carter in [I4]). The exis-
tence of this constant of motion is a direct consequence of the existence of a Killing
tensor field K4 in the Kerr-Newman spacetime, satisfying a modification of the Killing
vector equations:

V (@) = 0. (1.3)

The Carter constant is then constructed using the Killing tensor and the geodesic tangent
vector X%:

C =K pX*X".

It is straightforward to show that C is conserved along geodesics. Furthermore, when
combined with the 3 conserved quantities described earlier, this allows all geodesics to
be parametrised uniquely by the values of (H, F, L,C), thereby allowing the geodesic

equation to be integrated completely.

The existence of a Killing tensor is a highly non-trivial property of a spacetime, so
it can be considered fortunate that the Kerr-Newman family, one of the most physically
important class of spacetimes, admits such a tensor; in this thesis, the implications of

this fact will be investigated and used to study the ways in which the Kerr-Newman
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solution can be characterised.

1.2.3 Uniqueness and stability of the Kerr-Newman family

The current family of uniqueness results regarding the Kerr-Newman solution contain
assumptions on the spacetime that are often considered too restrictive, such as analyticity
—see e.g. [17] for a review on the subject. There exist a variety of results removing this
assumption — for example, showing that stationary spacetimes with sufficiently small
Mars-Simon tensor must be isometric to a member of the Kerr family, at least in the
exterior region [33]. The latter is of particular relevance here, as the Mars-Simon tensor
is integral to the characterisation of the Kerr spacetime due to Mars [40, [41], which will
be examined in Chapter [2] Although there has been significant progress on proving the
linear stability of the Kerr-Newman solution (for example, by investigating the behaviour
of the Teukolsky equation on a Kerr background [20]), the question of non-linear stability
has been far more stubborn — see e.g. [22] for a discussion on this topic. In particular,
although there exist results for spacetimes with a higher degree of symmetry (such as
the non-linear stability of Schwarzschild under axially symmetric perturbations [37]), the
full non-linear stability of the Kerr-Newman family under arbitrary perturbations is still

an open problem.

1.3 The Cauchy problem

In order to investigate the behaviour of perturbations to Kerr-Newman black holes, it is
useful to be able to specify an ’initial state’ of the spacetime, where initial data specifying
the perturbation is prescribed and evolved to future times. The set-up and theoretical
motivation for this process was first outlined by Fourés-Bruhat in [25], with further

results extending the argument in collaboration with Geroch in [15].

To construct this formalism, we assume that the spacetime can be foliated by a family
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S; of spacelike partial Cauchy surfaces (surfaces containing points which are not causally
related); otherwise, the spacetime can be restricted to regions where this is true. Such
spacetimes are called globally hyperbolic; the implications of global hyperbolicity are
discussed in [29]. The spacetime metric g4, induces an (n — 1)-dimensional Riemannian
metric h;; on each S, and each &; also admits an extrinsic curvature tensor K;; describing
the embedding of the S; in the larger manifold M. Singling out the ¢ = 0 surface, together

the collection (Sy, hij, K;j) constitutes an initial data set for the spacetime.

As the spacetime metric g4 is constrained by the Einstein equations, we expect the
induced metric and extrinsic curvature to also be constrained; in fact, by projecting the
FEinstein equations along the normal direction to the surface S, we obtain the Hamiltonian

and momentum constraints:

r— K9K;;+tr(K)* = 16mp

D;K7; — D;K = 8p;

where r is the Ricci scalar of h;j, D; is the Levi-Civita connection associated to h;;, and
p and p; are the matter energy and matter momentum densities respectively, obtained
from the energy momentum tensor Tj,;. By projecting the Einstein equations fully onto

S, one obtains a set of evolution equations for the data h;;, Kj;.

Reversing the perspective, one can ask whether these constraints are sufficient to
reconstruct the full spacetime — in other words, whether an initial data set satisfying
these constraints gives rise to a unique spacetime upon evolution. The following result

due to Choquet-Bruhat and Geroch [15] answers this (in the vacuum case):

Theorem 1. Let (S, hap, Kqp) be an initial data set satisfying the constraint equations
in vacuum, consisting of a spacelike partial Cauchy surface S, a Riemannian metric h;;
on 8, and the extrinsic curvature tensor K;; of S. Then, there exists a unique spacetime

(M, gap) (up to diffeomorphisms) such that:

1. (M, gap) satisfies the vacuum Einstein equations;
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2. (M, gap) is globally hyperbolic, with S a member of the foliation of Cauchy surfaces;
3. hij is the metric on S induced by gap;

4. Kjj is the extrinsic curvature of S;

5. (M, gap) is an extension of any other spacetime satisfying the above conditions.

There exist generalisations of this result to spacetimes with non-trivial matter con-
tents — see e.g. the review in [49]. Note that the obtained spacetime is only unique
up to diffeomorphisms; in particular, if (M, g) and (./\;l, g) are spacetimes satisfying the
conditions of the theorem, then there exists a smooth bijective map ¢ : M — M with
a smooth inverse, and § = ¢.«(g), the pushforward of g with respect to ¢. Two diffeo-
morphic spacetimes have equivalent physical properties (such as giving rise to the same
dynamics), and so diffeomorphisms can be thought of as a gauge symmetry of general

relativity.

One can also ask how properties of the larger spacetime are encoded in the initial data,
particularly symmetries. Representing symmetries of a spacetime in terms of conditions
on an initial hypersurface is not a new idea; the Killing initial data (KID) equations — see
e.g. [10] — are conditions on a spacelike Cauchy surface S which guarantee the existence
of a Killing vector in the resulting evolution of the initial data. In this way, isometries of
the whole spacetime can be encoded at the level of initial data. The resulting conditions
form a system of overdetermined equations, so do not necessarily admit a solution for an
arbitrary initial data set. In fact, it has been shown that solutions to the KID equations
are non-generic, in the sense that generic solutions of the vacuum constraint equations

do not possess any global or local spacetime Killing vectors — see [11].

Recalling that the Kerr-Newman spacetime admits a Killing tensor which satisfies
a generalised form of the Killing vector equation, one can now ask whether a similar
procedure can be performed here; explicitly, can one obtain an overdetermined system

on an initial data hypersurface which, when a solution exists, guarantees the existence
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of a Killing tensor in the resulting spacetime? Chapter |3 will address this question.

1.4 Spinors

Throughout this thesis, spinorial methods will be used to simplify the analysis and
illustrate some of the ideas in a more intuitive way. There are conflicting conventions
and notation used across the literature for these methods, so in this section the chosen
conventions to be used in this thesis will be set out. We will for the most part be using

the conventions set out in Stewart [55] and Penrose & Rindler [45] [46].

The curvature spinors ¥ spcp, ® apa/p’ (spinorial counterparts of the Weyl and trace-
free Ricci tensors respectively) and A (proportional to the Ricci scalar) are defined by

the relations
Oapéc = Vapept” —20¢uepyc,  Dapéo = Popap (1.4)
where Uap =V 44V B)A/. In spinorial notation the Einstein-Maxwell equations read
Paparp =20aB0A B, A=0 (1.5)
where ¢pap = ¢(4p) is the Maxwell spinor satisfying
VA dap = 0. (1.6)
The Bianchi identity in electrovacuum spacetimes takes the form
VA apen =208V dop. (1.7)

We systematically use of the following expression for the (once contracted) second deriva-
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tive of a spinor:

/ 1
VAQ/VBQ = ieABD"i‘DAB- (1.8)
In particular, from the Maxwell equation (|1.6]) it follows that
Vapbcp =V a(Pcp)- (1.9)
Our conventions for the curvature are that
VeVaul — VgVeu® = Ryeabul.
Given an antisymmetric rank 2 tensor Fj;, the Hodge dual of Fy; is defined by
* 1 cd
ab = 5€ab Led- (1.10)

The self-dual version of F; is then defined by

Fab = Fab‘i‘iF*ab- (1.11)

1.5 The space-spinor formalism

In what follows assume that the spacetime (M, g) obtained as the development of Cauchy
initial data (S, h;j, K;;) can be covered by a congruence of smooth timelike curves with
tangent vector 7% satisfying the normalisation condition 7,7¢ = 2. The reason for nor-
malisation will be clarified in the following — see equation . Associated to the

vector 7% one has the projector

htt =6,0 — 1,70 (1.12)

projecting tensors into the distribution (7)* of hyperplanes orthogonal to 7.
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Remark 3. The congruence of curves does not need to be hypersurface orthogonal —
however, for convenience it will be assumed that the vector field 7® is orthogonal to the

Cauchy hypersurface S.

Now, let 744" denote the spinorial counterpart of the vector 7% — by definition one
has that

AT = 2. (1.13)

A

Let {OA, LA} denote a normalised spin-dyad satisfying 04 = 1. In the following we

restrict the attention to spin-dyads such that
A4 = o5 4 AT (1.14)

It follows then that

TaaTPY =645, (1.15)

consistent with the normalisation condition (1.13]). As a consequence of this relation, the

AA’

spinor 7 can be used to introduce a formalism in which all primed indices in spinors

and spinorial equations are replaced by unprimed indices by suitable contractions with
a2

Remark 4. The set of transformations on the dyad {oA, LA} preserving the expansion
is given by the group SU(2,C). In particular, a general linear transformation of a
spinor dyad {o?, 4} of the form o? — ao? 4 B4, 14 — v0* + 614 must be an element

of SL(2,C) to preserve the normalisation condition 04t* = 1; it is an easy exercise to

show that unitarity is a necessary and sufficient condition to preserve the form of (|1.14)).

1.5.1 The Sen connection
The space-spinor counterpart of the spinorial covariant derivative V 44/ is defined as

VAB ETBA/VAA/. (116)
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The derivative operator V 24p can be decomposed in irreducible terms as
1
Vap = §€AB77 +Dap (1.17)

where

P =12V au = Vo9, Dap = 7'(AAIVB)A’ = Vi)

The operator P is the directional derivative of V 44 in the direction of 744" while Dyp

corresponds to the so-called Sen connection of the covariant derivative V g4 implied by

’
TAA .

1.5.2 The acceleration and the extrinsic curvature

Of particular relevance in the subsequent discussion is the decomposition of the covariant
derivative of the spinor 7pp/, namely V4 7gp. A calculation readily shows that the

content of this derivative is encoded in the spinors
A -
Kap =75" Praa, Kapcp =71p~ DapToc: (1.18)

corresponding, respectively, to the spinorial counterparts of the acceleration and the

Weingarten tensor, expressed in tensorial terms as
— 1 b — cy d
K, = —57 VioTa, Ko = —hohy*Very.

It can be readily verified that

Kap = Ky, Kapep = Kapy(cp)- (1.19)



Chapter 1. Background 24

In the sequel it will be convenient to express K 4pcp in terms of its irreducible compo-

nents. To this end define
Qapep = Kapep), Qup = K19p0, K = Kap“P, (1.20)

so that one can define

1

1 1
Kapcp = Qapep — 5eacn)p — 5epcin)a — zeacen)pls. (1.21)

If the vector field 7% is hypersurface orthogonal, then one has that Q45 = 0, and thus
the Weingarten tensor satisfies the symmetry Kgp = K(qp) so that it can be regarded as
the extrinsic curvature of the leaves of a foliation of the spacetime (M, g). If this is the

case, in addition to the second symmetry in ((1.19) one has that

Kapep = Kcpab-

In particular, K spcop restricted to the hypersurface S satisfies the above symmetry and

one has Qa5 = 0 — cfr. Remark [3]

In what follows denote by Dap = D(4p) the spinorial counterpart of the Levi-Civita
connection of the metric h;; on §. The Sen connection Dyp and the Levi-Civita con-
nection D sp are related to each other through the spinor K4pcp. For example, for a

valence 1 spinor 74 one has that

Q

1
Dapmc = Dapme + §KABC TQ,

with the obvious generalisations for higher order spinors. A consequence of this rela-
tionship is that, even when 7 is hypersurface-orthogonal, the Sen connection does not
coincide with the Levi-Civita connection - for example, the Sen connection will in general

have a non-zero torsion. The definition of the Sen connection as an irreducible compo-
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nent of the projection of the covariant derivative operator means that it is a natural
choice of differential operator in this setting; if needed, equations using the Sen connec-
tion can be transformed to ones involving the induced Levi-Civita connection via the

above relation.

1.5.3 Hermitian conjugation

Given a spinor w4, its Hermitian conjugate is defined as

Ta=71a%70. (1.22)

This operation can be extended in the obvious way to higher valence pairwise symmetric
spinors. The operation of Hermitian conjugation allows to introduce a notion of reality.
Given spinors vap = vap) and apop = §aB)(cp), We say that they are real if and
only if

UAB = —VAB; §aBep = €ABCD-

If the spinors are real then it can be shown that there exist real spatial 3-dimensional
tensors v; and &;; such that v4p and {4pcp are their spinorial counterparts. We also
note that

~AB CSABCD
vapr™? >0, §aBepé >0

independently of whether vap and £4pcop are real or not.

Finally, it is observed that while the Levi-Civita covariant derivative D4p is real in

the sense that

—

Dapme = —Dap7c,

the Sen connection Dyp is not. More precisely, one has that

~ 1 .
Dapmec = —Dapme + §KABCQ7TQ. (1.23)



Chapter 1. Background 26

1.5.4 Commutators

The main analysis of this section will require a systematic use of the commutators of
the covariant derivatives P and Dp. In order to discuss these in a convenient manner
it is convenient to define the Hermitian conjugate of the Penrose box operator [ p =

VC/(AVB)C/ in the natural manner as
IﬁAB = TAA/TBBIDA/B/.
From the definition of [ 4/ g/ it follows that

— A’ B’ F
Uapme = 74” 7B° Proarpm .

In terms of 45 and (] AB, the commutators of P and D4p read

~ 1
[P.Dap] =Oap — Oap — 5 KasP + K°uDp)p — KapepDP, (1.24a)

1 1 ~ ~
[Das,Depl = §(€A(CDD)B + epcdpya) + 3 (eaccdpys + €pcUpya)

1
+ i(KCDABP - KABCDP) + KCDF(ADB)F — KABF(CDD)F- (1.24b)

Remark 5. Observe that on the hypersurface S the commutator (1.24b)) involves only
objects intrinsic to S. Notice, also, that the Sen connection D4p has torsion. Namely,

for a scalar ¢ one has that

[Dap, Depld = KopraDPpy ¢ — KaprcPp)' ¢.

1.6 Outline of the thesis

Chapter [2| investigates the implications of the existence of Killing spinors in a

spacetime. In particular, it is shown that in electrovacuum spacetimes the existence
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of a Killing spinor, along with some assumptions on the associated Killing vector in
an asymptotic region, guarantees that the spacetime is locally isometric to the Kerr-
Newman solution. This extends work by Backdahl and Valiente Kroon [6], which proved
the vacuum case; in electrovacuum spacetimes, a further assumption linking the electro-
magnetic content to the Killing spinor is necessary. It is shown that the characterisation
of these spacetimes in terms of Killing spinors is an alternative expression of character-
isation results of Mars (Kerr) and Wong (Kerr-Newman) involving restrictions on the
Weyl curvature and matter content; in particular, the existence of a Killing spinor gives
rise to a set of constants linking the Ernst potential, Killing form and Faraday tensor,
which when set to certain values single out the exact Kerr or Kerr-Newman solutions.
It is shown that the additional assumption of asymptotic flatness sets these constants to

the required values automatically.

Chapter (3| describes the construction of a geometric invariant characterising initial
data for the Kerr-Newman spacetime. This geometric invariant vanishes if and only if the
initial data set corresponds to exact Kerr-Newman initial data, and so characterises this
type of data. Making use of the characterisation of the Kerr-Newman solution in terms
of Killing spinors given in Chapter [2, the space spinor formalism is then used to obtain
a set of four independent conditions on an initial Cauchy hypersurface that guarantee
the existence of a Killing spinor on the development of the initial data. Following an
analysis similar to that of the vacuum case given in [6], the properties of solutions to the

approximate Killing spinor equation are used to construct the geometric invariant.

Chapter [4]investigates the problem of Killing spinor initial data in the characteristic
problem. The motivation for investigating this comes from the fact that a spacetime
admitting a bifurcate Killing horizon can be uniquely determined (at least in the domain
of dependence of the horizon structure) once initial data is provided on the bifurcation
surface. In a similar way, it is shown that data for a Killing spinor candidate field need
only be specified on the bifurcation surface of the bifurcate horizon in order to guarantee

the existence of a Killing spinor in a neighbourhood of the bifurcation surface. This
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characterises the class of spacetimes known as distorted black holes, which includes but

is strictly larger than the Kerr family of spacetimes.

Finally, Chapter [5| will provide a brief summary of the contents of each chapter, as
well as some observations regarding interpretations as well as limitations of the obtained

results.



Chapter 2

Killing spinors as a
characterisation of rotating black

hole spacetimes

The contents of this chapter reproduces the arguments and results given in the paper

18]

2.1 Introduction

The Kerr spacetime, describing a rotating black hole in vacuum, is one of the most
interesting exact solutions to the Einstein field equations. As well as having physical
relevance, the existence of various incarnations of uniqueness theorems (see e.g. [17]
and references within for a survey of this vast topic) has cemented its place as one
of the most important vacuum solutions mathematically and physically. There also
exist generalisations to spacetimes containing restricted forms of matter — for example,
the Kerr-Newman solution to the Einstein-Maxwell equations. Although less physically

relevant than the vacuum case, these solutions still retain many interesting features of the

29
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Kerr solution, including uniqueness under further assumptions on the matter content.

Thus, these generalisations still retain a mathematical importance.

The remarks in the previous paragraph justify the attention given to finding charac-
terisations of the Kerr spacetime and its relations — see e.g. [24], [40]. Such characteri-
sations can be used to study various open questions about these black hole spacetimes.
For example, they can be used to reformulate uniqueness theorems and clarify rela-
tions between them; study the stability of the solutions, by indicating the behaviour of
perturbations; and illustrate the special characteristics of these particular solutions, in
particular through the use of symmetries — see e.g. [3] for a recent discussion on these
and related ideas. The last of these is elegantly achieved through the use of Killing
spinors. Closely related to Killing-Yano tensors, these spinorial objects represent “hid-
den symmetries” of the spacetime, which cannot be represented using Killing vectors. It
has been shown previously (see [4, [0, [7]) that a vacuum spacetime admitting a Killing
spinor, along with conditions on the Weyl curvature and an asymptotic condition, must
be isometric to the Kerr spacetime. This result crucially depends on a result of Mars
(see [41]) which uses the structure of the Weyl tensor, and its relation to the Killing
vectors of the spacetime, to characterise the Kerr solution in a way that exploits to the
maximum possible extent the asymptotic flatness of the spacetime — more precisely, it is
required that the self-dual Killing form of the stationary Killing vector is an eigenform

of the self-dual Weyl tensor.

The characterisation of the Kerr spacetime by Mars given in [41] relies on a previous
characterisation of this solution to the vacuum Einstein field equations in terms of the
vanishing of the so-called Mars-Simon tensor — see [40]. Interestingly, the latter charac-
terisation has been generalised to the electrovacuum case by Wong [56] assuming some
restrictions on the matter content. This characterisation is not optimal, in the sense that
it assumes the existence of certain relations among the relevant geometric objects; by
contrast, in [40], the existence of the vacuum counterpart of these relations is a conse-

quence of the characterisation. Nevertheless, as a consequence of the analysis in [56], one
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may expect that the Kerr-Newman solution can be characterised by the use of Killing
spinors in a similar way to the vacuum case. The characterisations in both [40] and [56]
come in both a local version (in which certain constraints arising in the characterisation
are fixed by evaluating them at finite points of the manifold) and a global version (in
which asymptotic flatness is used to fix the value of the constants). Remarkably, the
generalisation of the characterisation in [41] to the electrovacuum case has, so far, not

been obtained.

The purpose of this chapter is to revisit the characterisation of the Kerr spacetime
using Killing spinors and then generalise to the electrovacuum case using Wong’s result
n [56]. The analysis suggests that Wong’s result can be strengthened to obtain a char-
acterisation of the Kerr-Newman spacetime more in the spirit of Mars’s original result in
[40] and, in turn, be used to obtain a generalisation of the analysis of [41] in which the
Kerr-Newman spacetime is characterised in an optimal way by a combination of local

and global assumptions.

This chapter is organised as follows. Section gives an introduction to Killing spinors,
their relation to Killing vectors and investigates the implications on the curvature of the
spacetime. Some time will be spent defining 1-forms and potentials which are useful
for the characterisations later on. In section the asymptotic conditions required for
the characterisation theorems are defined. Then, in section [2.4] it is shown that the
conditions of the characterisation result of Mars [41] are satisfied when the spacetime
admits an appropriate Killing spinor. Finally, section shows the same for Wong’s
characterisation of the Kerr-Newman spacetime — i.e. the existence of an appropriate
Killing spinor on a electrovacuum spacetime guarantees that the solution is Kerr-Newman

up to an isometry.
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Conventions

In what follows, (M, g) will denote an electrovacuum spacetime satisfying the Einstein
equations with vanishing cosmological constant. The signature of the metric throughout
this thesis will be (4, —, —, —), to be consistent with most of the existing literature using
spinors. We use the spinorial conventions of [45], outlined in Chapter (1, The lowercase
Latin letters a, b, c, ... are used as abstract spacetime tensor indices while the uppercase
letters A, B, C, ... will serve as abstract spinor indices. The Greek letters u, v, A, ... will
be used as spacetime coordinate indices while «, 3, 7, ... will serve as spatial coordinate

indices.

2.2 Killing spinors

The purpose of this section is to provide a summary of the basic theory of Killing spinors
in electrovacuum spacetimes — see [30H32]. Throughout the chapter, (M, g) will denote
an electrovacuum spacetime. Recall that in spinorial notation the Einstein-Maxwell

equations read

Paparp =20a0A B, A=0

where ¢pap = ¢(4p) is the Maxwell spinor satisfying the Maxwell equation ([1.6).

2.2.1 Basic equations

A Killing spinor is a valence-2 symmetric spinor k4p satisfying the equation

VA’(A’%BC) =0. (21)
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By taking a further contracted derivative of this equation, it can be shown that a solution

to equation ([2.1)) must also satisfy the integrability condition

”(AF‘I’BCD)F =0 (2.2)

where ¥ 4pcp is the Weyl spinor, a completely symmetric spinor which is the spinorial
equivalent of the Weyl tensor. This condition restricts the form of the Weyl spinor as it
requires that

VABcD X K(ABKCD)-

This proportionality condition forces the spacetime to be of Petrov type D, N or O (i.e.
conformally flat). In particular, if a non-vanishing Killing spinor has a repeated principal
spinor as so that kap = a(4ap), then the Weyl spinor has four repeated null directions,
and so it is of Petrov type N. If the Killing spinor is algebraically general, i.e. there exist
a4 and fp such that k4 = a(4f8p), then the Weyl spinor has two pairs of repeated null

directions, and so it is of Petrov type D.

Algebraically general Killing spinors

In the case that the Killing spinor k4p is algebraically general, the principal spinors a4
and fp can be used to form a normalised spin dyad which we will denote by {04, .7}
and such that 04:* = 1. The Killing spinor k4p is then expanded in terms of the basis

as

KAB = %0(ALB) (2.3)

for some factor of proportionality s». Due to equation (2.2]), the Weyl spinor can be

expanded in a similar way as
Vapcp = Yo(40BLctp) (2.4)

for some factor of proportionality .
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The substitution of expression (2.3)) in the Killing spinor equation ([2.1)) implies restric-

tions on the Newman-Penrose (NP) spin connection coefficients. Namely, one has that
k=A=v=0=0,

consistent with the fact that the spacetime is, at least, of Petrov type D.

2.2.2 The Killing vector associated to a Killing spinor

A Killing spinor k4p can be used to define the spinorial counterpart €44/ of a (possibly

complex) vector via the relation
Ean =V ukac. (2.5)

It can be shown, using the Killing spinor equation (2.1]) and commuting covariant deriva-

tives, that €44+ satisfies the equation
Vaaépp + Vppéaar = =65, Cp0ap

Therefore, if

H(AC¢B)CA/B/ =0 (26)

then {44/ is the spinorial counterpart of a (possibly complex) Killing vector in the space-
time. In what follows, condition (2.6)) will be referred to as the matter alignment condi-
tion. In the particular case of an electrovacuum spacetime the matter alignment condi-

tion takes the form

kA% bp)c =0 (2.7)
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implying that the spinors kap and ¢ 4p are proportional to each other. Thus, in terms

of the basis dyad {o, ¢} used to express equation ({2.3)) one can write

PAB = PO(ALB) (2.8)
with ¢ a proportionality factor.

As discussed in [46], the notion of a Lie derivative is, in general, not well defined for
spinors. However, in the case of a Hermitian spinor fAA, associated to a real Killing
vector, and recalling that the Maxwell spinor ¢ap is the spinorial counterpart of the
Faraday tensor Fy;, there exists a consistent expression which can be used to obtain
the spinorial counterpart of L¢F,, = 0, the derivative of the Faraday tensor along the

integral curves of the real vector field &:

Ledap = Vocrpap + doaVpeel . (2.9)
The Maxwell spinor will be said to inherit the symmetry generated by the Killing vector
£ if Lepap = 0. Explicitly, the Maxwell spinor ¢ 45 and Faraday tensor [y, are related
via the relation

FaaBp = 2¢0apearp

where F 44 g’ denotes the spinorial counterpart of the self-dual Faraday tensor F,, =

F+ iF;b‘

Remark. In Section [2.2.5.3] it will be shown that in an electrovacuum spacetime
(M, g, F) endowed with a Killing spinor k4p such that {44/ is Hermitian and ¢4p
and k4p satisfy the alignment condition (2.7)) then ¢4p inherits the symmetry of the

spacetime.
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2.2.3 Relation to Killing-Yano tensors

If a spacetime (M, g) admits a Killing spinor k45, and the vector 44" defined by ([2.5)
satisfies €44 = €44" (i.e. is a real vector), then one can construct a real, valence-2

antisymmetric tensor Y, as the tensorial counterpart of the Killing spinor:
Yaapp =i(kapearn — Rarprean)
which, as a consequence of , satisfies the Killing-Yano equation
ViaYp)e = 0.

Such a tensor is called a Killing- Yano tensor. Conversely, if a spacetime admits a Killing-
Yano tensor Yy, one can construct a valence-2 symmetric spinor k4p from the relation
i A/Bl

HABE—ZG (YAA’BB’+1YA*A’BB’)

which satisfies the Killing spinor equation (2.1]) — see e.g. [46], Section 6.7 page 107; also
[44]. Furthermore, if a spacetime admits a Killing-Yano tensor Y, then it is possible to
construct a new tensor:

Koy = Yo"V

that is a Killing tensor satisfying equation (|1.3)); accordingly, the spacetime will admit a

Carter-like constant of motion along geodesics.

Remark. The existence of a Killing-Yano tensor for the Kerr-Newman spacetime is a
key ingredient to showing the integrability of the Hamilton-Jacobi equations for geodesic
motion, and the separability of the Maxwell equations and the Dirac equation on the

Kerr-Newman spacetime — see e.g. [34] or [54] for further details.
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2.2.4 The Killing form

In the reminder of this section assume that the matter alignment condition (2.6|) is
satisfied, so that £4 4/ is the spinorial counterpart of a Killing vector. Moreover, assume
that £44/ is a Hermitian spinor so that, in fact, it is the spinorial counterpart of a real

vector. Then, define the spinorial counterpart of the Killing form of £*, namely

Hab = v[agb} = vaéb (210)

Haapp =Vaaépp.

As a consequence of the antisymmetry in the pairs 44/ and g/, Haa/gp can be decom-

posed into irreducible parts as
Haapp =Mnapeap + NaB€an (2.11)

where 14 p is a symmetric spinor — the Killing form spinor. In the sequel, we will require

the self-dual part of Hqa/gp’ , denoted by H4/gp/, and defined by
Hanpp = Hanpp +1H 4 pp-
A direct calculation then yields
HaaBp = 2nABEAB - (2.12)
Using equation , the spinor nap can be expressed in terms of the Killing vector as

1 /
NAB = §VAA’§BA : (2.13)
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Then, by using (2.5)), this can be expanded in terms of the Killing spinor:

3
NAB = — Z\I/ABCDKCD~ (2.14)

Expansions for the algebraically general case

Assuming that k4p is algebraically general, the basis expansions of ka5 and YV pcop in

(2.3) and (2.4) can be used to find the basis expansion of n4p:

1
NAB = Z%¢0(ALB) = 10(ALB) (2.15)

where

sab. (2.16)

3
Il
.

2.2.5 The Ernst forms and potentials

Throughout this section let £* denote a real Killing vector on the electrovacuum space-

time (M, g). A well-known consequence of the Killing equation

vaé‘b + vbéa =0

and the definition of the Riemann tensor in terms of commutators of covariant derivatives
is that

vavbgc = Rcbadgd- (217)

The Ernst form of the Killing vector £% is defined as

Xa = 26" Hpa. (2.18)

The Ernst form first arose in [23], in which the Einstein equations are reduced to a two-

dimensional non-linear equation (the Ernst equation) under the assumptions of axisym-
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metry and asymptotic stationarity; an explicit solution to this equation allows the metric

to be obtained by solving a system of ODEs. Several properties of the Ernst form follow
from the identity (2.17)) recast as

va,Hbc = 7-‘7'017¢1d£d (219)

where Rgpeq denotes the self-dual Riemann tensor. From expression ([2.19) it follows,
using the identity
1
>k}z[abc]d = geabceReda
that

1
VieHpe = gecbaeRedfd, VHap = — Rpa&”.

A further computation using the above identities and the definition of the Ernst form,

equation (2.18]), yields
VaXb - VbXa = _260bae£cRed£d- (220)

2.2.5.1 The vacuum case

In vacuum Rgpeq = Caped, Where Cypeq denotes the self-dual Weyl tensor, and so from the

symmetries of the Weyl tensor one concludes that
VaXb - vaa =0.

Consequently, in vacuum the Ernst form is closed and thus locally exact. This means

that there exists a scalar, the Ernst potential y, satisfying

Xa = VaX-

Now let €44 denote the (Hermitian) spinorial counterpart of the real Killing vector

&% If £q a0 arises from a Killing spinor through the relation (2.5)), it follows from the
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spinor decomposition of H 4 4/pp’ that the spinorial counterpart y 44/ of the Ernst form

Xq is given by

Xaar = 4napt

= 3/€CF\I/ABCFVDA/,‘<;DB.

2.2.5.2 The electrovacuum case

In the electrovacuum case the Ernst form is no longer exact — cf. equation (2.20)).
However, if the Faraday tensor inherits the symmetry of the spacetime —i.e. L¢Fy, =0
— then it is possible to construct a further 1-form, the so-called electromagnetic Ernst

form, which can be shown to be closed. In analogy to the definition in , define
o = 282 Fpa. (2.21)
A calculation then shows that
Vash — Visa = 2L Fup.

If L¢Fap = 0 then ¢, is closed, and therefore locally exact — this means that there exists

a scalar, the electromagnetic Ernst potential ¢, which satisfies
Sa = Vs.
The spinorial version of equation (2.21)) can be readily be found to be

san = 4¢apV9anrly.
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2.2.5.3 Expansions in the algebraically general case

Consider the case of an algebraically general spinor kap such that 44/ as given by
equation is Hermitian. In order to find the full basis expansions of x 44/ and ¢g4-,
the derivative of the proportionality factor s needs to be calculated. First, note the
expressions for the derivatives of the spin basis vectors in terms of the spin coeflicients

from the Newman-Penrose formalism:

Va40p = — qog0ptar — PLA0BOAr + Y0A0BO A + €ELAOBL A1
— KLALBLA" + pOALBLA + OLALBOA? — TOALBO A/, (2.22a)
VA4t = oALlBlar + BLaltBOgr — YOALBOA) — €ELALBLA/

— N0AOBTA — [WLAOBO A/ + VOAOBO A + TILAOBT A (2.22b)

Substituting the basis expansion for the Killing spinor into the Killing spinor equation,

using expressions ([2.22a))-(2.22b|) and the relation e = 04tp — t40p, we find that

Vanrse = (104041 — TOATAr + TLAOAT — PLATAY) - (2.23)

The expressions obtained in the previous paragraphs allow one to obtain an expression
of the Killing spinor in terms of the spin basis. A calculation starting from the definition

(2.5) readily yields the expression
3 _ _ _ _
Ean = —5%(,LL0A0A/ — TMOATA — TLAOA + pLALA/).
If 440 is a Hermitian spinor, i.e. €44/ = €44/, then the previous expression implies

iz = ps, T = T, (2.24)

I
A}
|
N
S

The vacuum case. Using the previous expression along with the basis expansions for
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kap and ¥ 4pcp, in vacuum, the Ernst form can be expanded as
3 5 _ _ _ _
Xan = 3 Y (L0A0 A — TOATA + TLADA — PLATAY) - (2.25)

Intuitively, one would expect it should be possible to express the Ernst form x in terms
of the scalars > and . As it will be seen in Section the characterisation of the Kerr
spacetime given by Theorem [2| suggests that a combination of the form ¢+ %%21# with ¢
a constant is a suitable candidate. In order to compute the derivative of this expression
one needs an expression for V44/¢. This can be obtained from the vacuum Bianchi
identity

VAA/\I}ABCD — 0

Substituting the basis expansion for the Weyl spinor into the above relation, using equa-

tions (2.22a]) and (2.22b]), collecting terms and finally making use of eap = 04tp — t40B

one obtains

Vaah = =3¢ (,U,OAaA/ — TOALA? + TLAOY — pLAZA/) . (226)

Combining this with expression (2.23)) for V 445 we find that
3
Vaar <C - 4%2¢> = XAA
so that the Ernst potential can be written as

3
X:C_Z%%/; for some ¢ e C.

This expression can be simplified using the following observation: combining expressions

for V 44s2¢c and V 441 given by equations (2.23)) and ([2.26]), respectively, it can be shown
that

Vaar (3%0) = 0;

therefore, we have that

B =M (2.27)
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with 9t a (possibly complex) constant, and furthermore

— -2 2.98
X=c— (2.28)

The electrovacuum case. From the electrovacuum Bianchi identity given by ([1.7)), a

calculation yields

Van = =3 (¢ +20@) poaoa + 3 (¢ — 20@) ot ar

=3 (¢ —20@) TLaoa + 3 (Y + 20p) pLatar.

Similarly, using the Maxwell equations (1.6]) and the derivatives of the basis vectors given

by equations (2.22al) and (2.22b]), the derivative of the Maxwell proportionality factor ¢

is given by

Vaarp = —2¢ (MOAEA/ — ToAlLAr + TLAOA — ,OLAZA/) . (229)

Thus, a further calculation using the previous expressions yields the following explicit

expression for the electromagnetic Ernst potential:

SAAr = 3%<,0(M0A5A’ — TOALA? + TLAOA — PLAZA’)-

In the electrovacuum case, assuming an algebraically general Killing spinor and that
the Maxwell spinor and the Killing spinor satisfy the matter alignment condition ,
the characterisation of the Kerr-Newman spacetime given in Theorem [ suggests an
expression for ¢ in terms of the scalars s, ¢ and ¢ — namely ¢ — /2@ with ¢ a
constant. Combining the above expressions we can conclude that

VAA’ <Cl — g:ﬁ) = CAA’ (230)
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so that the potential can be set to be

¢=¢ - == for some ¢ € C. (2.31)

Moreover, combining expression ([2.23|) for V 44/3¢ with (2.29) it is straightforward to
verify that
Vaa (%290) = 0;

therefore, there exists a (possibly complex) constant  such that

o =9, (2.32)

In the electrovacuum case the relation between the scalars s and ¢ takes a more

complicated form than in vacuum — cf. equation (2.27). Given a complex constant €', a

calculation using expressions (2.23)), (2.29)) and relation (2.32)) shows that

6 2 T 6 2 —
Vaar <?+%3w> = — (WJFQ_/J) 0404 — <W+Q:_T> oA
x P =

72 72

6|Q|%sxr €7 _ 6|Q1%%p €p _
+ [ —— —l—g LAOA + | ——— +; LALA-

72 72
If the spinor &4/ is assumed to be Hermitian, then the previous expression reduces to

_ #(C+6|9%)

— (,quc_)A/ + ToAlAr — TLAOA — pLAZA/).
x

¢
Vaa <_ + %31/)> =
%
Thus, by choosing € = —6|Q|?, then the combination €/ + 531 is a constant — that is,

there exists 9’ € C such that

= 0. (2.33)

2
»
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Therefore, the scalar 1) can be expressed solely in terms of » as

1 2
Y= — (S)ﬁ’ - L?’ ) : (2.34)
> x
Note that when the Maxwell field vanishes, then the constant £ also vanishes and this

equation reduces to the vacuum case given by (12.27]).

Finally, it is observed that expanding expression (2.9) in terms of the spinor basis
{0, ¢} and using expressions (2.15)) and (2.29) one concludes, after a calculation, that

Lepap =0

— so that ¢ 4p inherits the symmetry generated by the Killing spinor k5.

2.2.6 Spacetimes with an algebraically special Killing spinor

So far, the Killing spinor has been assumed to be algebraically general; in this section,
this assumption is justified by briefly considering electrovacuum spacetimes with an
algebraically special Killing spinor. These spacetimes will not play a role in the remainder
of this chapter. The reason for this is the following result:

Lemma 1. Let (M, g) be a smooth electrovacuum spacetime with a matter content satis-
fying the matter alignment condition and admitting a valence-2 Killing spinor kap such
that the associated field £ is a Hermitian spinor. If kap is algebraically special (i.e.

KkAB = aaap for some non-vanishing spinor ay) then £* = 0.

Proof. 1t follows directly from the existence of a non-vanishing algebraically special
Killing spinor that the spacetime (M, g) must be of Petrov type N — see equation (2.4)).

That is, the basis expansion of the Weyl spinor has the form:

U ABcD = Yasapacap (2.35)
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for some function 1. As the matter alignment condition holds by assumption, the Hermi-
tian spinor € 4 4+ is the spinorial counterpart of a real Killing vector £%. The content of the

Killing form of &% is encoded in the symmetric spinor n4p. Substituting the expansions

(2.35) and kap = aaap into equation (2.14)), it follows directly that nap = 0. Thus,

the Killing form H, of €% vanishes. Accordingly, £% is a covariantly constant vector on

(M, g):
Va? = 0. (2.36)

In order to further investigate the consequences of this observation, introduce a nor-
malised spin dyad {o?, 1} with o4 = a4 and 04t* = 1. The Killing and Maxwell

spinors have the basis expansions

KAB = 0AOB, $AB = POAOB.

Substituting the first of the above expressions into the Killing spinor equation V 4145 pc) =

0 immediately implies that

y=a=0c=k=0, p+e=0, T+ 8 =0. (2.37)

Moreover, the Hermitian spinor £4 4/ can be expressed as

Eaar = —380404 + 3€04L 41

The spinorial version of equation implies DEgar = 0, Agar = 0, 0§44 = 0 and
544 = 0. In particular, from A 4 = 0 and 6644 = 0, expanding in terms of the basis
one finds that 7 = 0 and e¢p = 0. Combining this expression with the third and fourth
conditions in produces the conclusion that
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It follows then that

Eaar = 0.

As we want to use the asymptotics of the Killing vector £ 44/ in the characterisation
of the Kerr and Kerr-Newman spacetime, we will rule out the algebraically special case

and assume that the Killing spinor is algebraically general — i.e. kagkdB # 0.

Remark. Note that because Vapcp X K(apkcp), the conditions U 4 popUABCD £

0, Y apcp # 0 imply that the Killing spinor is algebraically general and non-zero, i.e.
kapk B # 0, kap # 0. These two conditions on the curvature are precisely the ones
assumed in Theorem 6 of [6], and so the characterisation of Kerr in terms of Killing
spinors presented in that article is essentially the same as the one presented here. Despite
this, we reproduce the result here for completeness and ease of comparison with the
electrovacuum case.Here, this is done using the local result of Mars given in [40], whereas
the proof in [6] uses the global result from [41]. In the absence of a generalisation to
the electrovacuum case of the characterisation of [41], the analysis of the Kerr-Newman

spacetime must make use of the local result by Wong [56].

2.3 Boundary conditions

This section provides a brief discussion of the boundary conditions which will be used
in conjunction with the properties of Killing spinors to characterise the Kerr and Kerr-

Newman spacetimes.
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2.3.1 Stationary asymptotically flat ends

The remainder of this chapter will be concerned with spacetimes admitting a stationary
asymptotically flat 4-end — see e.g. [56].

Definition 1. A stationary asymptotically flat 4-end in an electrovacuum spacetime
(M, g, F) is an open submanifold M C M diffeomorphic to I x (R®\ Bg) where
I C R is an open interval and Br is a closed ball of radius R. In the local coordinates
(t,x%) defined by the diffeomorphism the components g, and F,, of the metric g and

the Faraday tensor F' satisfy

|g/u/ - nw/| + |Taocg/u/| < CT?I, (2.38&)

’FMV‘ + !rﬁaFW| S Cl7’727 (238b)

g = 0, (2.38¢)

OuFl =0, 2.38d
I

where C' and C' are positive constants, r = (x')* + (2%)* + (2*)?, and n,, denote the

components of the Minkowski metric in Cartesian coordinates.

Remark 1. It follows from condition in Definition 1| that the stationary asymp-
totically flat end M, is endowed with a Killing vector £* which takes the form 8; —
a so-called time translation. Condition implies that the electromagnetic field
inherits the symmetry of the spacetime — that is L¢F = 0, with L£¢ the Lie derivative

along £°.

Of particular interest will be those stationary asymptotically flat ends generated by
a Killing spinor:
Definition 2. A stationary asymptotically flat end My C M in an electrovacuum
spacetime (M, g, F') endowed with a Killing spinor kap is said to be generated by a
Killing spinor if the spinor a4 = VP arkap is the spinorial counterpart of the Killing

vector £%.
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Remark 2. Stationary spacetimes have a natural definition of mass in terms of the
Killing vector £ that generates the isometry — the so-called Komar mass m defined as

1
m=—— lim €apeq VELASW
& r—oo s,

where S, is the sphere of radius r centred at = 0 and dS® is the bi-normal surface
element to S,. Similarly, the total electromagnetic charge of the spacetime is defined via
the integral

q= b lim Fpd S,

41 r—oo S

Remark 3. In the asymptotic region the components of the metric can be written in

the form

2m
goo =1— o +0(r7?),

de, 5. SP a7 _
90a = 045273 +0(r™?),

Gap = _5o<6 + O(r_l)’

where m is the Komar mass of £ in the end M, €43, is the flat rank 3 totally anti-
symmetric tensor and S? denotes a 3-dimensional tensor with constant entries. The

components of the Faraday tensor are

Foo = 25 +0(r%),

Faﬁ = O(Tﬁ3)

—see e.g. [53]. Therefore, to leading order any stationary asymptotically flat electrovac-

uum spacetime is asymptotically a Kerr-Newman spacetime.
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2.3.2 Killing spinor and Killing vector asymptotics

In general, the spinor €44/ obtained from a Killing spinor k45 using formula ([2.5) is
not Hermitian. It is, however, well known that for the Kerr-Newman spacetime &4/ is
indeed the spinorial counterpart of a real Killing vector £* — see e.g. [3]. More generally,
this observation applies to any electrovacuum spacetime with a stationary asymptotically
flat end. To see this, note the following:

Lemma 2. Let (M, g, F) be a smooth electrovacuum spacetime with a stationary asymp-
totically flat end My, admitting a complex Killing vector field £*. If £* tends to a time

translation at infinity in Moo, then &% is in fact a real vector in M.

Proof. The complex Killing vector can be written {* = £ + 1§ for two real vectors
£¢, &9, which are also Killing vectors by linearity of the Killing vector equation. As a
time translation (0;) is a real vector, we have £ — (0¢)® and £§ — 0 as r — oo in the
asymptotically flat end M,. However, it is well known that there are no non-trivial real
Killing vectors which vanish at infinity — see e.g. [12] [I6]. Therefore, £§ = 0 on M,

and % = &7 is a real Killing vector. O

Therefore, by assuming that the Killing vector £% is asymptotically a time translation,
then the assumption requiring its spinorial equivalent £4 4/ to be a Hermitian spinor can
be dropped. In fact, it is possible to replace this condition on the Killing vector with an
asymptotic condition on the Killing spinor, as described in the following proposition:
Proposition 1. Let (M,g, F) denote an electrovacuum spacetime with a stationary

asymptotically flat end Moo generated by a Killing spinor kap. Then the functions s,
@ and v as defined by equations (2.3]), (2.4) and (2.8)) satisfy

n = §r+ 0(1),
q _
@:ﬁ—i_O(r 3)7
6m _4
T/) - _7“73 + O(T‘ )
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Moreover, one has that

E=tant™ =14+007").

Proof. The analysis in [53] shows that to leading order the electrovacuum spacetime
(M, g, F) coincides on My, with the Kerr-Newman spacetime. Thus, the expansions
for the fields s, ¢ and ¢ must coincide to leading order with their expressions for the

Kerr-Newman spacetime — see [3].

2.4 Characterisations of the Kerr spacetime

The motivation behind the analysis in this chapter is the following theorem by M. Mars
— see [41]:
Theorem 2. Let (M, g) be a smooth, vacuum spacetime admitting a Killing vector &

with self-dual Killing form Hqy,. Let M satisfy:

(i) there exists a non-empty region Mo C M where

H? = H oy H® #0;

(i) The self-dual Killing form and the Weyl tensor are related by

1
Cabcd =H <,Haercd - 3H2Iabcd> (239)
where
1 .
Labed = Z(Qacgbd — Gad9bc + leabcd)

and H is a complex scalar function.
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Then there exist two complex constants | and ¢ such that

If, in addition, ¢ = 1 and | is real positive, then (M, g) is locally isometric to the Kerr

spacetime.

Remark 1. It is important to emphasise that in the above Theorem the existence of
the constants ¢ and [ and the functional dependence of H and H? with respect to y
are a consequence of the hypotheses of the theorem — this should be contrasted with
the electrovacuum case in which the existence of the analogous constants needs to be

assumed.

Remark 2. A particular case of Theorem [2[ occurs when (M, g) is a priori assumed
to have an stationary asymptotically flat end M, with the Killing vector £* tending
asymptotically to a time translation at infinity and such that the Komar mass associated
to £ is non-zero. These assumptions ensure that H#? # 0 in a region of the spacetime —

namely, in M. Therefore, only condition (2.39) needs to be verified to conclude that

and that the spacetime is locally isometric to the Kerr spacetime — see Theorem 2 in

[40].

Remark 3. The subsequent discussion will make use of the spinorial counterparts of
the conditions in the previous Theorem. In particular, notice that the content of the

combination HpyHeq — %7—[22@“1 can be encoded in terms of the spinor nap as defined

in equation (2.13)) as

2
<477AB770D - gUEFnEF(EADGBC + €AC€BD)> earpec'p’ = AN(ABNCD)EA B €CI D!
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where the last expression follows from a decomposition in irreducible terms. Thus,

condition (2.39)) can be concisely re-expressed in terms of spinors as

Vapcp = 2HnaBNcD)- (2.40)

Finally, it is noticed that the condition H? # 0 can be re-expressed as

napn*f # 0.

2.4.1 Killing spinors and the Mars characterisation

This section will analyse the extent to which existence of a Killing spinor on a vacuum
spacetime implies the hypotheses of the characterisation of Kerr given in Theorem
The assumptions to be made in the remainder of this section shall here be explicitly
stated for completeness:

Assumption 1. Let (M, g) be a smooth vacuum spacetime and let KK C M such that:
(i) on K there exists an algebraically general Killing spinor kap;

(ii) the spinor Eax = VP gkap is on K the spinorial counterpart of a real Killing

spinor £* —i.e. Eaa is Hermitian.

Under the above assumptions, it follows from combining the basis expansion for

U pcp and nap, equations (2.4) and (2.15)), respectively, that

16
Vapcp = %Twﬂ(ABTICD)-

Thus, hypothesis (ii) of Theorem [2|is satisfied with

— cf. equation ([2.40). Using the expression for the Ernst potential predicted by the
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theory of Killing spinors, equation ([2.28]), it follows that

which is precisely the form for H predicted by Theorem [2 From this expression one can

further conclude that
M [ 4

3
2 4
= — — . 2.41
This, again, is the form predicted by Theorem

The above observations allow the formulation of the following Killing spinor version
of Theorem 2}
Proposition 2. Let (M, g) denote a smooth vacuum spacetime endowed with a Killing
spinor kaop with KkapkB £ 0 such that the spinor Eqq = V8B ykap is Hermitian. Then

there exist two complex constants | and ¢ such that
H2 = —1(c — )L (2.42)

If, in addition, ¢ = 1 and | is real positive, then (M, g) is locally isometric to the Kerr

spacetime.

2.4.1.1 A characterisation using asymptotic flatness

Proposition [2| requires the setting of two complex constants by hand, in order to recover
the Kerr spacetime. It is possible to avoid this by introducing a further, physically
reasonable assumption - that the set K C M contains a stationary asymptotically flat

end with the Killing spinor x4p generating the time translation Killing vector.

From Proposition [T] it readily follows that

16m*
(=X = =5 +0677).
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Similarly, one has, using equation ([2.15]), that

4m?
H?2 = —dn? = —— + O(r™).
T
Thus, by consistency with the required asymptotic behaviour of the Ernst potential, one

has to set ¢ = 1 and the constant [ in Proposition [2]is given by [ = 1/4m?.

We can summarise the discussion of the previous section in the following:
Theorem 3. Let (M, g) be a smooth vacuum spacetime containing a stationary asymp-
totically flat end Mo generated by a Killing spinor kap. Let the Komar mass associated
to the Killing vector Eqa = VBA//-@AB in My be non-zero. Then, (M, g) is locally iso-

metric to the Kerr spacetime.

Remark. As observed in [3] the requirement on the non-vanishing of the Komar mass

can be replaced by an assumption on the existence of a horizon.

2.5 Characterisations of the Kerr-Newman spacetime

We now move on to discuss characterisations of the Kerr-Newman spacetime through
Killing spinors. Our starting point is the following result — see [56]:

Theorem 4. Let (M,g,F) be a smooth, electrovacuum spacetime admitting a real
Killing vector £*. Assume further that £* is timelike somewhere in M and that Fy
is non-null on M (i.e. F? = FuF® # 0) and that it inherits the symmetry of the
spacetime — i.e.

LeFqp = 0. (2.43)

Assume, furthermore, that there exists a complex scalar P, a normalisation for ¢ and a
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complex constant ¢1 such that:

P = —dF% (2.44a)
1
Hap = =5 ab, (2.44b)
1 1 1 of
Cabcd =3P §]:ab/Hcd + i]:ab/Hcd - gIabcd]:ef/H . (244(3)

Then there exist complex constants ¢o and c3 such that:

2
-’
46% — |¢)? = cs. (2.45b)

P= (2.45a)

If, further, co is such that ci<2 is real and cs is such that |c2|? + c3 = 4, then (M, g, F)

18 locally isometric to a Kerr-Newman spacetime.

Remark 1. As in Section this section will make use of a reformulation of the

conditions in Theoremin spinorial formalism. A direct computation shows that (2.44al)
can be rewritten as

P = —8cipape””.

Similarly, condition ([2.44b)) can be expressed in terms of the spinors nap and p4p as

1
NAB = —5SPAB;
while, finally, equation (2.44c) is equivalent to

Vascp = 6Pnap9dcp)-

2.5.1 Killing spinors and Wong’s characterisation

This section will investigate some further consequences of the existence of Killing spinors

on electrovacuum spacetimes. Again, the assumptions to be made in the remainder of



Chapter 2. Killing spinors as a characterisation of rotating black hole spacetimes 57

this section shall be explicitly stated here for completeness:
Assumption 2. Let (M, g) be a smooth electrovacuum spacetime and let K C M such

that:
(i) on K there exists an algebraically general Killing spinor kap;

(ii) the spinor {aar = VB ykap is on K the spinorial counterpart of a real Killing

spinor €% —i.e. E44 is Hermitian;

(iii) the Killing spinor kap and the Mazwell spinor ¢ ap satisfy the alignment condition

K(AQ(Z)B)Q = 0 - that is, they are proportional.

As already discussed in Section [2.2.5.3] under the above assumptions it follows that
Lepap = 0 which, in turn, implies that L¢Fy, = 0. Thus, the electromagnetic field

inherits the symmetry generated by the Killing spinor x4p.
From the discussion in Sections 2.2.7] and 2.2.4] it follows that
Vapop = Yo(40BLoLD)y, N(ABPCD) = NPO(AOBLCLD)-

Thus, the spinorial version of condition (2.44c)) in Theorem || is satisfied with a propor-

tionality function P given by

Now, making use of expressions (2.31)), (2.32)) and (2.34)) to rewrite P in terms of the

electromagnetic Ernst potential, it follows that

R , = 951’.
g — ¢ 253

Thus, under the Assumptions [2, hypothesis (2.44c|) and conclusion (2.45a) in Theorem

[ are satisfied.

Moreover, from the discussion in Section [2.2.5.3] it follows that the spinors nap and
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¢ap are proportional to each other with a proportionality function ¢ given by

The calculations of Section cf. equation in particular, show that ¢ satisfies
the properties to be expected from the electromagnetic Ernst potential. Therefore, by
setting the constant ¢’ in the definition of ¢ given by to zero (and thereby fixing
the normalisation of the potential), condition is satisfied. A similar remark holds
for condition with the constant ¢; given by

In the presence of a Killing spinor, the norm &2 = £,£% of the associated Killing vector

is related to the electromagnetic form ¢. To see this consider

Vané? =288V yuépp

= —20apP 0 — 270 €a"
where in the second line it has been used that
Vaalpp = NABEA' B + 1A/ B/€AB-
As the spinors nap and ¢4p are proportional to each other, one can write

Vaa€? = poap+ <V dan
1
= Z(fVBB@ +<Vpp<)

1
= -~ Vapls]:
1 VBBl
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Therefore, locally there exists a constant cg such that
4% — [¢|* = cs.

Thus, conclusion (2.45bf) in Theorem H|is also a consequence of the existence of a Killing

spinor.

The discussion of this section can be summarised with the following Killing spinor
version of Theorem [
Proposition 3. Let (M, g, F) denote a smooth electrovacuum spacetime satisfying the
matter alignment condition, endowed with a Killing spinor kap with kapk B = 0 such
that the spinor Eaar = VB v kap is Hermitian. Then there exist two constants ¢ and c3

such that

9 \2
(g —¢)t=— (8Q> F2, 4€% — I¢]? = cs.

If, further, co is such that ¢2Q is real and c3 is such that |c2|? + ¢z = 4, then (M, g, F)

18 locally tsometric to a Kerr-Newman spacetime.

2.5.1.1 A characterisation using asymptotic flatness

As in Proposition the above result relies on the setting of complex constants by
hand; to avoid this, assume that the domain I C M considered in the Assumptions
contains an stationary asymptotic flat end with the Killing spinor k4p generating the
time translation Killing vector. We use this further assumption to determine the values

of the constants in Proposition

Combining the asymptotic expansions of Proposition [1| with the relation (2.32]) gives

4
=—qgecR.
9] 94
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Similarly, using equation ([2.33)) it follows that

1
M = —§6m.

A further computation using equation (2.31)) and (2.32)), respectively, shows that

(c2—¢)' = <C2 — 2;” + O(r_1)>4, <2Q>2 F= zj +0(r7®).

Therefore, for consistency, one has to set
€ = —

and we must have t2Q € R. From the previous discussion it follows that ¢ = 2m/q +

O(r~1) so that, together with &2 = 1+ O(r~!), we can conclude that c3 as defined by

equation (2.45b)) is given by
2
m
(3 = 4 (1 — )
e

Accordingly one has that |c2|? + ¢3 = 4 as required.

The discussion of the previous paragraphs can be summarised in the following:
Theorem 5. Let (M, g, F) be a smooth, electrovacuum spacetime satisfying the matter
alignment condition, with a stationary asymptotically flat end Mo generated by a Killing
spinor kap. Let both the Komar mass associated to the Killing vector E4ar = VE ykap
and the total electromagnetic charge in Mo, be non-zero. Then (M,g, F) is locally

isometric to the Kerr-Newman spacetime.

2.6 Applications

The advantage of the Killing spinor characterisation of the Kerr and Kerr-Newman solu-
tions is that the existence of such a spinor is a geometric condition, with only reasonable

asymptotic conditions needing to be further assumed for the results presented above.
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This geometric condition can be converted into initial data for a spacelike Cauchy sur-
face, in a way compatible with the constraint equations. This can then be exploited to
construct a geometric invariant for the initial data set, which parametrises the deviation
of the resulting global development of the initial data set from the exact Kerr or Kerr-
Newman solution. Various versions of this construction analysis have been considered in
[4-7] for the vacuum case. A generalisation of these constructions to the electrovacuum

case will be given in the next chapter.

In this chapter, we have considered only vacuum and electrovacuum spacetimes; it
may be possible to extend these results to spacetimes with other matter contents. For
example, in [42] the authors extend the results of [41] to spacetimes with non-zero cosmo-
logical constant; it is possible that the necessary conditions of these generalised results

can be replaced with the existence of a Killing spinor, or a conformal Killing spinor.

Finally, the results of this chapter suggest that the characterisations of the Kerr-
Newman spacetime given by Wong in [56] can be improved to an optimal theorem in
which condition in Theorem |4|is a consequence of the other hypotheses. An opti-
mal result of this type is desirable if one is to attempt to use this type of characterisation

to construct an alternative approach to the uniqueness of black holes.



Chapter 3

A geometric invariant
characterising Kerr-Newman

initial data

The contents of this chapter reproduce the arguments given in the paper [19].

3.1 Introduction

As we have seen, the Kerr-Newman solution can be characterised using the existence
of a solution to the Killing spinor equation in a natural way. A key condition in the
generalisation of the vacuum result to the electrovacuum case was the matter alignment
condition - in other words, the assumption that the Maxwell spinor and Killing spinor
are proportional. Although this condition restricts the form of the matter content of
the spacetime, it has the reasonable physical interpretation of requiring the matter fields
to ‘inherit’ the symmetry described by the Killing spinor. The most attractive feature
of Theorem [5] is that all of the assumptions are either physically motivated asymptotic

conditions, or requirements that the spacetime respect this ‘hidden’ symmetry.

62
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Once the motivation for a characterisation of the Kerr-Newman spacetime in terms
of Killing spinors has been established, it is useful to investigate how the existence of
such a spinor can be expressed in terms of initial data. The initial value problem in
General Relativity has played a crucial role in the systematic analysis of the properties
of generic solutions to the Einstein field equations — see e.g. [25], 50, [5I]. It also provides
the framework necessary for numerical simulations of spacetimes to be performed — see

e.g. [1,9].

As described in Chapter [1, symmetries of a spacetime can be represented as condi-
tions on an initial hypersurface via the KID equations — see [10]. These equations form a
overdetermined system, so for arbitrary initial data sets satisfying the vacuum constraint
equations, solutions will not necessarily exist. This corresponds to the observation that
generic solutions to the vacuum Einstein equations do not admit any spacetime Killing
vectors (see [I1]). An analogous construction can, in principle, be performed for Killing
spinors. This analysis has been performed for the vacuum case giving explicitly the con-
ditions relating the Killing spinor candidate and the Weyl curvature of the spacetime —
see [28] and also [6]. These conditions are, like the KID equations, an overdetermined
system and so do not necessarily admit a solution for an arbitrary initial surface. How-
ever, in [0 [6] it has been shown that given an asymptotically Euclidean hypersurface it
is always possible to construct a Killing spinor candidate which, whenever there exists
a Killing spinor in the development, coincides with the restriction of the Killing spinor
to the initial hypersurface. This approximate Killing spinor is obtained by solving a
linear second order elliptic equation which is the Euler-Lagrange equation of a certain
functional over S. The approximate Killing spinor can be used to construct a geometric
invariant which in some way parametrises the deviation of the initial data set from Kerr

initial data. Variants of the basic construction in [6] have been given in [4] [7].

The purpose of this chapter is to extend the analysis of [6] to the electrovacuum case.
In doing so, we rely on the characterisation of the Kerr-Newman spacetime given in [I8]

which, in turn, builds upon the characterisation provided in [41] for the vacuum case
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and [56] for the electrovacuum case. As a result of our analysis we find that the Killing
spinor initial data equations remain largely unchanged, with extra conditions ensuring
that the electromagnetic content of the spacetime inherits the symmetry of the Killing
spinor. These electrovacuum Killing spinor equations, together with an appropriate
approximate Killing spinor, are used to construct an invariant expressed in terms of
suitable integrals over the hypersurface & whose vanishing characterises in a necessary
and sufficient manner initial data for the Kerr-Newman spacetime. Our main result, in

this respect, is given in Theorem

Overview of the chapter

Section [3.2| provides a brief recap of the theory of Killing spinors in electrovacuum space-
times, and defines some of the relevant quantities for this chapter. Section discusses
the evolution equations governing the propagation of the Killing spinor equation in an
electrovacuum spacetime. The main conclusion from this analysis is that the resulting
second-order system is linear and homogeneous in a certain set of zero-quantities and
their first derivatives. The trivial initial data for these equations, sufficient to guarantee
the existence of a unique solution, give rise to conditions implying the existence of a
Killing spinor in the development of an initial hypersurface. In Section the space-
spinor formalism is used to re-express these conditions in terms of quantities defined on
the initial hypersurface. In addition, in this section the interdependence between the var-
ious conditions is analysed and a minimal set of Killing spinor data equations is obtained.
Section introduces the notion of approximate Killing spinors for electrovacuum initial
data sets and discusses some basic ellipticity properties of the associated approximate
Killing spinor equation. Section [3.6discusses the construction of a solution to the approx-
imate Killing spinor equation for a class of asymptotically Euclidean manifolds. Finally,
Section brings together the analyses in the various section to construct a geometric
invariant characterising initial data for the Kerr-Newman spacetime. The main result of

this chapter is given in Theorem
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Recap of notation and conventions

Let (M, g, F') denote an electrovacuum spacetime, i.e. a solution to the Einstein-Maxwell
field equations. The signature of the metric in this chapter will again be (+,—, —, —),
and we will continue to use the spinorial conventions of [45]. The lowercase Latin let-
ters a, b, ¢, ... are used as abstract spacetime tensor indices while the uppercase letters
A, B, C,... will serve as abstract spinor indices. The Greek letters u, v, A,... will be
used as spacetime coordinate indices while «, 3, v,... will serve as spatial coordinate

indices. Finally A, B, C,... will be used as spinorial frame indices.

The conventions for the spinorial curvature tensors will be as described in (1.4]), and
the expression for the once-contracted second derivative of a spinor given in (1.8]) will

be used systematically.

3.2 Killing spinors in electrovacuum spacetimes

3.2.1 The Einstein-Maxwell equations

To recap from a previous chapter, the Einstein-Maxwell equations are given by

Papap = 20aBPA B, A =0,

VAydag =0.

Given a Maxwell spinor in an electrovacuum spacetime, applying the derivative V4’ ¢ to
the Maxwell equation in the form V4 4 ¢ap = 0 gives, after some standard manipula-

tions, the following wave equation for the Maxwell spinor:

O¢ap =2V apcpe””. (3.1)
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3.2.2 Killing spinors

Recall that a Killing spinor Kap = K(4p) In an electrovacuum spacetime (M,g,F)is a

solution to the Killing spinor equation

VA’(AI{BC) =0. (32)

In this chapter, a prominent role will played by the integrability conditions implied
by the Killing spinor equation. More precisely, one has the following:
Lemma 3. Let (M, g, F) denote an electrovacuum spacetime endowed with a Killing

spinor kap. Then kap satisfies the integrability conditions:

K%V pep)Q =0, (3.3a)

Okap + \I’ABCD/QCD =0. (3.3b)

Proof. The integrability conditions follow from applying the derivative Vo4 to the
Killing spinor equation (3.2)), then using the identity (1.8)) together with the box com-
mutators ([1.4]) and finally decomposing the resulting expression into its irreducible terms

— the only non-trivial trace yields equation ([3.3b]) while the completely symmetric part

gives equation ([3.3al). O

Remark 6. Observe that although every solution to the Killing spinor equation
satisfies the wave equation , the converse is not true. In what follows, a symmetric
spinor satisfying equation , but not necessarily equation , will be called a
Killing spinor candidate. This notion will play a central role in our subsequent analysis
— in particular, we will be concerned with the question of the further conditions that

need to be imposed on a Killing spinor candidate to be a true Killing spinor.

In the previous chapter, the Killing spinor was used to construct a (complex) vec-

tor 44/ via equation (2.5). In vacuum, this vector is by construction a Killing vector;
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however, this is only true in electrovacuum spacetimes if the matter alignment condition
(given in equation ) holds. If this condition is satisfied, then the Killing spinor
kap and Maxwell spinor ¢4p are necessarily proportional - in other words, the elec-
tromagnetic fields in the spacetime are ‘aligned’ with the symmetry represented by the
Killing spinor. Of course, the vector £ 44/ can be constructed from any symmetric can-
didate spinor k4p via , even if k4 is not a Killing spinor; in this case, {44/ will be

referred to as the Killing vector candidate associated to kap.

3.2.3 Zero-quantities

From here onwards, the calculations performed will make use of zAct, a suite of ten-
sor computer algebra packages for Mathematica. Although the calculations could be
straightforwardly carried out by hand, the size and complexity of some expressions makes
this unwieldy; therefore, computer algebra packages provide significant time savings, and
allow one to focus on the structure of and relationships between expressions rather than

on their explicit composition. Some common operations which can be performed include:
e Commutation of derivatives (including covariant, Sen and normal)

e Decomposition of spinorial expressions into irreducible parts; this operation is one
of the most useful ways of simplifying a long expression, as many of the irreducible

parts trivially or can easily be shown to vanish

e Substitution of one equation into another - for example, the elimination of Uk ap

from wave equation computations using equation (3.3b))

e Reduction of second-order derivative terms to curvature, for example via the box

commutators (|1.4)).

Some of the code used to perform these operations could be recycled from the analysis
of the vacuum case, given in [6]; however, these rules had to updated and complemented

with additional rules to take into account the non-vanishing matter content of electrovac-
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uum spacetimes. The precise order in which these rules are applied is usually motivated
by the form of the final expression that is wished to be obtained, mirroring the order
that would be used were the calculations being done by hand. The website for the suite,

including downloads, documentation and updates, can be found at www.xact.es| [43].

In order to investigate the consequences of the Killing spinor equation (3.2)) in a more

systematic manner it is convenient to introduce the following zero-quantities:

HA’ABC’ = 3VA’(AK'BC)7 (34&)
Saasp =Vanlpp +Vppan, (3.4b)
G)AB = QH(AQ¢B)Q. (3.40)

Observe that if H 4 apc = 0 then k4p is a Killing spinor. Similarly, if S44/gp = 0 then
&4 is the spinor counterpart of a Killing vector, while if © 45 = 0 then the matter

alignment condition ([2.7) holds.

The decomposition in irreducible components of V 4 4/kpc can be expressed in terms

of HA’ABC and EAA/ as

1 2

Vaakpe = gHA’ABC - gEA(B§C)A" (3.5)

Similarly, a further computation shows that for {44/ as given by equation (2.5 one has

the decomposition
_ 1
Vaa§pp = Na'pr€aB + NaBeapr + §SAA’BB’ (3.6)

where

1 ,
NAB = EVAQ’fBQ

is the spinorial equivalent of the self-dual Killing form defined in (2.10]).
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Remark 7. From equation ({2.5) it readily follows by contraction that
VAY 40 =0

independently of whether the alignment condition (2.7)) holds or not —i.e. the Killing vec-
tor candidate €44/ defined by equation ({2.5)) is always divergence free. This observation,
in turn, implies that

Saat =0,
so that one has the symmetry
SaaBs = SABy(AB) (3.7)

Remark 8. The zero-quantities introduced in equations (3.4a)-(3.4c|) are a helpful book-
keeping device. In particular, calculations analogous to that of the proof of Lemma

show that

V(AA,H|A’\BCD) = —6Vganckn?,

VA Hyrape = 2(0kpe + Ypepor®?).
Therefore, the integrability conditions of Lemma [3| can be written, alternatively, as
Vi Hapepy =0, VAYHyr ape = 0.

In particular, observe that if k4p is a Killing spinor candidate, then the zero quantity

H 4 4o constructed from x4p is divergence free.
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3.3 The Killing spinor evolution system in electrovacuum

spacetimes

In this section we systematically investigate the interrelations between the zero-quantities
Harape, Saarpp and © 4. The ultimate objective of this analysis is to obtain a sys-
tem of linear, homogeneous wave equations for the zero-quantities; it will follow that
the global solution to this system with vanishing zero and first order derivatives on an
initial hypersurface S is unique and also vanishing, giving rise to a Killing spinor on the

development of the initial data.

3.3.1 A wave equation for 44

Given a Killing spinor candidate s 45, the wave equation ([3.3b|) naturally implies a wave
equation for the Killing vector candidate £44/. First, note the following alternative
expression for the field Sqapp:

Lemma 4. Let kap denote a symmetric spinor field in an electrovacuum (M, g, F).

Then, one has that
_ 1 s 1 b
Saapp =604 pOap — §VPA’HB’AB - §VPB’HA’AB : (3.8)

Proof. To obtain the identity, start by substituting the expression £44 = V< 4/ KQA into
the definition of S44/pp/, equation (3.4b)). Then, commute covariant derivatives using

the commutators (1.4]) and make use of the decompositions of Vs kpc, Vaaépp and

Saapp given by equations (3.5), (3.6) and (3.7), respectively, to simplify. O

Remark 9. Observe that in the above result the spinor k4p is not assumed to be a

Killing spinor candidate.

The latter is used, in turn, to obtain a wave equation for the Killing vector candidate:

Lemma 5. Let kap denote a Killing spinor candidate in an electrovacuum spacetime
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(M, g, F). Then the Killing vector candidate a0 = VQA//{AQ satisfies the wave equa-

tion
DéAA’ = —2£PP/@APA/P/—F@PQA/P/HPIAPQ— \I/APQDHA/PQD+6QEA/P/VPPIGAP. (39)
Proof. One makes use of the definition of S44/pp/ and the identity (3.8)) to write

/ / / - 1 /
VANV antpp + VI Vpptan =6V (Oapdup) — SV VouHpap®

1 /
—§VAA VerHaasC.

The above expression can be simplified using the Maxwell equations. Moreover, commut-

. . . . . ’ ’ .
ing covariant derivatives in the terms vAA VeaHpag® and vAA Vep Haa® gives:

Oan = =267 @ aparp + @794 Hprapg — VapqpHa"P + 664" Vpp©a”

/ 1 /
~VaaVppc? — 5 VoaVep o zPe,

Finally, using VAYH prape =0 (see Remark |8) and the fact that €44/ is a Killing vector

candidate (see Remark [7)), the result follows. O

Remark 10. Important for the subsequent discussion is that the wave equation (3.9))

takes, in tensorial terms, the form
Oéa = —2P46" + Ja (3.10)
where J, is defined in spinorial terms by
Jaa = (I)PQA’PIHP’APQ — WupopHT9P + 664" VppO4L.
In terms of the zero-quantity {44+ to be introduced in equation one has

Jan = @9 Hpiapg — WapopHa " — 664" Capr.
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Therefore, J4 4/ is a linear and homogeneous expression of zero-quantities and does not
involve their derivatives. This is confirmed by the fact that setting J, = 0 in the
above equation yields the familiar wave equation for a Killing vector in a spacetime with
non-trivial matter content. Therefore, J, can be thought of as a vector measuring the

obstruction of &, to being a Killing vector.

3.3.2 A wave equation for H s spc

It is possible to construct a wave equation for the zero quantity Ha 4pc:
Lemma 6. Let kap denote a Killing spinor candidate in an electrovacuum spacetime

(M, g, F). Then the zero-quantity H apc satisfies the wave equation

OHasep = 2%oparHa ™ + 20 pparHac™ + 460 da” Hppoa

~ 12047 VppOpc — 2VpP S5y arm. (3.11)
Proof. Consider, again, the identity in the form
VapHape" = 6043080 — Spoyap).
Applying the derivative V p®’ to the above expression one readily finds that
Vo' Vap Hape® = 6(05cVp? dap + a5V Opc) — VP Spoyann)-

Using the identity (1.8)) and the box commutators (|1.4) one obtains, after simplifying

using the Maxwell equations, the desired equation. ]

Remark 11. Observe that the right hand side of the wave equation (3.11)) is a linear
and homogeneous expression in the zero-quantity H 47 4pc and the first order derivatives

of @AB and SAA’BB’-
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3.3.3 A wave equation for O 45

In order to compute a wave equation for the zero-quantity associated to the matter

alignment condition it is convenient to introduce a further zero-quantity:
CAA’ = VQA/@AQ. (312)

Clearly, if the matter alignment condition is satisfied, then (44- = 0. The reason
for introducing this further field will become clear later. Using the above definition, it
follows that:

Lemma 7. Let kap denote a symmetric spinor field in an electrovacuum spacetime

(M, g, F). Then, one has that
0045 = Q\IJABPQ@PQ — QVBA/CAA/. (3.13)

Proof. The wave equation follows from applying the derivative V4 to the definition of

(a4 and using the identity (|1.8]) together with the box commutators (|1.4]). O

Remark 12. A direct computation using the definitions of © 4p and (4 4/ together with
the expression for the irreducible decomposition of V 4 4/kpc given by equation (3.5 and

the Maxwell equations gives that

4 1
Can = =V a(adpoy’c + §§BA/¢>AB + gHA’ABOQbBC- (3.14)

Remark 13. It follows directly from equation (3.13|) that

VAY (4 = 0.

Alternatively, this property can be verified through a direct computation using the iden-

tity (3.14).

As the right hand side of equation (3.13)) is a linear and homogeneous expression in
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O 4p and a first order derivative of {44/, to construct a closed system of wave equations
one needs to construct a wave equation for {44/. The required expression follows from

an involved computation — as it can be seen from the proof of the following lemma:;:

Lemma 8. Let kap denote a symmetric spinor field in an electrovacuum (M, g, F).

Then, one has that

O¢an = 4¢P $apdap + §¢DB\IJDBCFHA’ACF - §¢DB‘I’ABCFHA/DCF
- §¢AD¢BCQ;A’B/HB’DBC - %HB/DBCVAB’¢DA’BC
- ;HA’DBCVAB’CbDB,BC + gqﬁDB/BCVAB/HA/DBC
+ §¢DA’BCVAB’HB/DBC’ - %QbDBVAB/S(BD)(A’B’)

—_ ! 2 !
— 4¢P hu " VppOap — gd?DBVBB S(AD)(a'B)

2 / 4
+ VAP PBV g Happ® — <

3 3VABI¢DBS(BD)(A/B/). (315)

where paapc =V andpc-
Proof. Consider the identity (3.14) and apply the derivative VA5 to obtain

1
VAR Can = —kPOVAR Y an o + g(HA’ABCvAB’d)BC + ¢BOVA g Harapc)

4
— VandpcVAprPC + §<¢ABVAB’§BA’ + &84V Apdan).
Some further simplifications give

1 1 1
VApCan = gVAB’QZ)BCHA’ABC + gVAA/GbBCHB/ABC - §¢ABVCB’HA’ABC

2
+ §¢ABS(AB)(A/B/)~

To obtain the required wave equation, apply Vp®' to the above expression and make

use of the decomposition (1.8) on the terms

1 ! ! ]_ !/
§VDB VAP Huyapo, VP VApCaw, —§¢ABVDB Veop Harap®
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Finally, substitution of the wave equations for ¢ap and Ha apcp, equations (3.1) and

(3.11]), yields the required expression homogeneous in zero-quantities. O

3.3.4 A wave equation for Sy pp

The discussion of the wave equation for the spinorial field S44/pp/ is best carried out
in tensorial notation. Accordingly, let Sy, denote the tensorial counterpart of the (not
necessarily Hermitian) spinor Sya/pp/. Key to this computation is the wave equation

for the Killing vector candidate £, equation ([3.10)).

Lemma 9. Let kap denote a Killing spinor candidate in an electrovacuum spacetime

(M, g, F). Then the zero-quantity Sqp satisfies the wave equation

OSup = —2LeTap + 274 Sac + 2T She — T Scagap — TupS<e

— 2C,4aS° + Vo dy + Vi Ja (3.16)
where L¢ Ty, denotes the Lie derivative of the energy-momentum of the Faraday tensor.
Proof. The required expression follows from applying (1 = V,V? to

Sab = Va&p + Vila,
commuting covariant derivatives, using the wave equation , the Einstein equation
Rap = Tap,
the contracted Bianchi identity

V@Capea = Vi Ty
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and the relation

1
Vabp = §Sab + v[agb}’

A straightforward computation shows that the Lie derivative of the electromagnetic
energy-momentum tensor can be expressed in terms of the Lie derivative of the Faraday

tensor and the zero-quantity S, in the following way:

1 1
LTy = ~2 i FS oy — FuCFySeq + §FchCd9abSdf

1
+ FbcﬁfFac + Facﬁngc — §FCdgab[,£ch.

Furthermore, the Lie derivative of the Faraday tensor can be expressed in terms of the

Lie derivative of the Maxwell spinor as
LeFaapp = <£5¢>AB — ;SAC/BDIQSC/DI) €A’p’ + complex conjugate,
where the Lie derivative of the Mazwell spinor is defined by
Ledap =9 Vocrpap + doaVpo’” (3.17)

— see Section 6.6 in [46]. This expression can be written in terms of zero quantities by
using the wave equations for the Killing and Maxwell spinors, the Maxwell equations

and the identity

1 1 /
“D(A‘I’B)DEFqﬁEF = §\PABCD@CD + §¢EFV(A\A Hy\pEF)

along with the wave equations for the Killing and Maxwell spinors and the Maxwell

equations, (3.3b)) and (3.9)), so as to obtain

3 / ! i
Lepap = _§V(AA (pyar + Huopa Vet 6P — 6PV " Hapep).-
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From this discussion, the result follows:
Lemma 10. Let kap denote a Killing spinor candidate in an electrovacuum spacetime
(M, g, F). Then the Lie derivative L¢Tay can be expressed as a linear and homogeneous

expression in the zero-quantities

SaaBp, Caa, Haapc

and their first order derivatives.

Remark 14. In the context of the present discussion the object L¢¢ap, as defined in
, must be regarded as a convenient shorthand for a complicated expression. It
is only consistent with the usual notion of Lie derivative of tensor fields if §AA/ is the
spinorial counterpart of a conformal Killing vector £* — see [46], Section 6.6, for further

discussion on this point.

3.3.5 Summary

Collecting the results of the current section gives the following result:
Proposition 4. Let kap denote a Killing spinor candidate in an electrovacuum space-

time (M, g, F). Then the zero-quantities

Hpyape, ©a, Caa, SaaBp

satisfy a system of wave equations, consisting of equations (3.11), (3.13), (3.15) and

(3.16)), which are linear and homogeneous in the above zero-quantities and their first

order derivatives.

The above proposition ensures that the system of equations given in (3.11)), (3.13)),

(3.15) and (3.16|) satisfy the conditions of Theorem 1 in [28], which guarantees the

existence of a unique solution in a neighbourhood of the hypersurface S, given arbitrary

initial data. For the remainder of this chapter, when the existence of a unique solution
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to a system of wave equations is claimed, it is this result which is being used, with the
understanding that the specific system satisfies the necessary assumptions. In particular,

applying this theorem to the system obtained here gives rise to the following;:

Theorem 6. Let kap denote a Killing spinor candidate in an electrovacuum spacetime
(M, g, F) and let S denote a Cauchy hypersurface of (M, g, F). The spinor kg is an

actual Killing spinor if and only if on S one has that

Huapcls =0, VepHyapcls =0 (3.18a)
Saappls =0, Ve Saappls =0 (3.18Db)
Oapls =0, Ve ©Oapls =0 (3.18¢)
Caarls =0, VEerCaals =0. (3.18d)

Proof. The initial data for the homogeneous system of wave equations for the fields

Huapo, ©aB, Caa and Saagp given by equations (3.11), (3.13), (3.15) and (3.16))

consists of the values of these fields and their normal derivatives on the Cauchy surface
S. As this system of wave equations satisfies the conditions of Theorem 1 in [2§], the

unique solution to these equations with vanishing initial data is given by

Hpapc =0, Oap=0, Caar=0, Saapp =0.

Thus, if this is the case, the spinor k4p satisfies the Killing equation on M and, accord-

ingly, it is a Killing spinor. Conversely, given a Killing spinor x 4p over M, its restriction

to S satisfies the conditions (3.18a])-(3.18d)). O

Remark 15. As the spinorial zero-quantities H o' agc, ©ap, (a4 and Saagp: can be
expressed in terms of the spinor kap, it follows that the conditions — are,
in fact, conditions on k4p, and its (spacetime) covariant derivatives up to third order.
In the next section it will be shown how these conditions can be expressed in terms of

objects defined on the hypersurface S.
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3.4 The Killing spinor data equations

The purpose of this section is to show how the conditions (3.18a)-(3.18d) of Theorem [f]
can be re-expressed as conditions which are defined on the hypersurface S. To this end,

the space-spinor formalism outlined in Chapter [I| will be used.

3.4.1 Basic decompositions

First, the irreducible decompositions of the various spinorial fields and equations required

for the subsequent analysis will be investigated.

3.4.1.1 Decomposition of the Killing spinor and Maxwell equations

Contracting the Killing spinor equation (3.2) in the form V(4 4/5cp) = 0 with 5¥ one
obtains

Vaip|cp) = 0

where V 45 is the differential operator defined in equation (1.16)). Using the decomposi-

tion (L.17)) gives

1
55(A|B|,PHCD) + D(A\B\HCD) =0.

Taking, respectively, the trace and the totally symmetric part of the above expression

one readily obtains the equations

Prap + D(AQHB)Q =0, (3.19a)

D(ABK'CD) =0. (319b)

Equation (3.19a) can be naturally interpreted as an evolution equation for the spinor
kp while equation (3.19b)) plays the role of a constraint.

A similar calculation applied to the Maxwell equation, equation (1.6]), in the form
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VA4 dac = 0 yields the equations

Poap — 2D adp)g =0, (3.20a)

DB ¢up =0. (3.20b)

Again, equation ([3.20al) is an evolution equation for the Maxwell spinor ¢ 45 while (3.20Db))

is the spinorial version of the electromagnetic Gauss constraint.

Remark 16. The operation of Hermitian conjugation can be used to define, respectively,

the electric and magnetic parts of the Maxwell spinor:

Eap = %(Q/ZgAB — ¢aB), Bap = %(¢AB + Q/Z)\AB)-

It is straightforward to verify that
Eap = —Eas, Bap = —Bas.

Thus, E4p and Bsp are the spinorial counterparts of 3-dimensional tensors F; and B; —
the electric and magnetic parts of the Faraday tensor with respect to the normal to the

hypersurface S.

3.4.1.2 The decomposition of the components of the curvature

Crucial for the subsequent argument will be the fact that the restriction of the Weyl
spinor ¥ pop to an hypersurface S can be expressed in terms of quantities defined
on the hypersurface. In analogy to the case of the Maxwell spinor ¢ 4p, the Hermitian
conjugation operation can be used to decompose the Weyl spinor ¥ 4pcop into its electric
and magnetic parts with respect to the normal to S:

(PaBep + ‘i’ABCD), Bapep = %(\i/ABCD —Uapcp)

N |

Eapcp =
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so that

Vapep = Fapep +iBapep.

The electrovacuum Bianchi identity (1.7 implies on S the constraint
DAY ypop = —20*PDapocp.
Finally, using the Gauss-Codazzi and Codazzi-Mainardi equations one finds that

1 1
Eapcp = —T(apcp) + §Q(ABPQQC’D)PQ — gfascpK + EpEep),

Bapcep = —iD%4Qpcp)o,
where r4pcp is the spinorial counterpart of the Ricci tensor of the intrinsic metric of

the hypersurface S.

3.4.1.3 Decomposition of the derivatives of the Killing spinor candidate

Once again, the calculations in this section will utilise the computer algebra packages

contained in the zAct suite (see [43]).

Given a spinor kap defined on the Cauchy hypersurface S, it will prove convenient

to define:

¢ =D Pryp, (3.21a)

3
§aB = ED(ACEB)CH (3.21b)
§aBcp = Dapkeop)- (3.21c¢)

These spinors correspond to the irreducible components of the Sen derivative of k4p, as

follows:

1 1 1
Dapkcep = §ABCD — §6A(C§D)B - gEB(CfD)A - §€A(C€D)B§-
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Using the commutation relation for the Sen derivatives given in equation (|1.24bl), the
derivatives of £ and £4p can also be calculated. The irreducible components of Dap&cp
are given on S (where we can assume that Q45 = 0, equivalent to assuming that the

vector 7 is normal to S) by

1 3 3 ~
Dapét = —o Ko+ ZQABCDfABCD + §@AB¢AB7 (3.22a)

3 2 1
Dapéoy* = —Dpcé — §‘I’BCADHAD + §K§BC + §QBCAD§AD
3 3 A
- §Q(BADFEC)ADF + §DAD£BCAD — 3@A(B¢C)A, (3.22Db)
1
Diapécp) = 3Vrpckn)’ + Kéapep — §§QABCD + Qe épyr

3 -
- §Q(ABPQ50D>PQ + 3D ulpcpyr — 30 (apdoD), (3.22¢)

where the Hermitian conjugate of the Maxwell spinor $ Ap is defined by
dap =TaV 5% darp.

Note that in (3.22b)), the term D g appears — there is no independent equation for the

Sen derivative of &.

The second order derivatives of £ can also be calculated. On the hypersurface S these

take the form:

DapDAPe = — K¢+ DKo P05 — 20" papg + 261 DapK

~ 3 3
— 4B, epe — §\I’ABCD§ABCD + §€ABCDDDFQABCF
~ 1 5
—3¢80“PQapep — §QABCDQABCD£ + ZK QABCPe pep

3
+ 3B, “PFQpepp — §QABFGQABCD£CDFG
- - 3
— 3B PDppdac + 362 d A Depop? — §/€ABDCD\1’ABCD

1 3 ~
+ §§ABDCDQABCD + §DCDDAB§ABCD + 30426 Peapcn

9 ~
— §QABCDDDF§ABCF + 3048 DpopA”, (3.23a)
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c 1 cpy 1
D" Pp)ct = 5apcpD 78 — 5 KDapt, (3.23b)
L2 pr 5
DapDcp)§ = §¢ OprQaBcp — Yapopé — §KQABCD§

8 1
—K*¢apcp + gEDE(AQBCD)E

1
+ *QEFPQQABCDgEFPQ + 9

10 3 3

- EKDE (aépomy” + §D(ABD\EF|§CD)EF + §DF(ADB\E|§CD)EF
1 8 3

+ §D(A|FDE|F€BCD)E + gKﬁ(AE‘I’BoD)E - iﬁ(AEDB|F|\I/CD)EF

3 1 ~
- iﬁEFD(AB‘I’CD)EF - §HEFDF(A‘I’BCD)E + 2§9aBPCD)
8~ -~ ~
- §K¢(AB@CD) +©pDcipdp)” + 304" Pecdp)E
~ 1
+ 04" Dpip1dcp) + 2V papcép) " + 6§Q(ABEFQCD)EF
14 5 . 2 5
- ?KQE ascép)” gKQ(AB §cp)EF + gQE(ABC’DD) §

+ §Q(ABCEDFP£D)EFP - Q(ABEFDCPfD)EFP

1 3

+ §Q(ABEFD|FP\§CD)EP - §Q(AEFPDBC§D)EFP
1 2 1

+ §Q(AEFPDB\P\§CD)EF + gf(ABDCD)K + §§(AEDB|F|QCD)EF
1

1 2
+ §€EFD(ABQCD)EF + 6§EFDF(AQBCD)E + ng(ABCDD)EK
1 3
+ §€(ABEFDC|1D|QD)EFP + §€(AEFPDBCQD)EFP

1 ~
+ §§(AEFPDB\P|QCD)EF + k4" épcDpyroE”

— 364" 08" Depyder + 264" 08" DoyridpyE + K5 d(apDeird)E

~ 1
+ 36" ppaDpcdpyr + iﬁE(A‘I’BEFPQCD)FP

1
— —RFFyP

3
5 (ABQCD)FP + *KEF‘I’PEF(AQBCD)P

+ 130¢ a%c ¢y + ¢ A oBctp)E + <Z>E 405%¢cp)

- ¢(AB<Z5 Feopypr +¢(A o8" écpypr + 308" <Z5(A §BCD)F

1~ 2 3~
+ *¢(AB@EFQGD)EF + *¢ 1 OB  Qepypr + *@EF¢(AEQBCD)F

6
1
EQEFP(AQBC Pepy? —*Q(ABC Q) P%prpo
3

49 FPOQ ac” §D)FPQ+EQ(AB EEQom " erpo

1
925 Fo BQCD)EF+ ¢> Fop AQBCD)F+29(ABC Qpyprpt”F
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1 1
+ §QE(APQQBCEF§D)FPQ + EQEFPQQ(ABEF§CD)PQ- (3.23¢)

Remark 17. It is of interest to remark that equation (3.23b)) is just the statement that

the Sen connection has torsion — cf. Remark [Bl

An important and direct consequence of the above expressions is the following:

Lemma 11. Assume that Qap =0 and Dypkcpy =0 on S. Then

DapDcpDerker = HaBcpDEFGH

on S, where HapoprraH 1S a linear combination of kap, Dapkep and DapDepkir

with coefficients depending on VY apcp, KaBcD, OAB, $AB and Dapocp.

Proof. The proof follows from direct inspection of equations (3.22a))-(13.22¢) and ([3.23a))-
(3-23¢). O

Remark 18. The above result is strictly not true if {apcp = Dapkcp) # 0.

3.4.2 The decomposition of the Killing spinor data equations

This section will provide a systematic discussion of the decomposition of the Killing
initial data conditions in Theorem [6] The main purpose of this decomposition is to
untangle the interrelations between the various conditions and to obtain a minimal set

of equations which is intrinsic to the Cauchy hypersurface S.

For the ease of the discussion, the assumptions assumed to hold throughout this

section will be stated explicitly here:

Assumption 3. Given a Cauchy hypersurface S of an electrovacuum spacetime (M, g),
we assume that the hypothesis and conclusions of Theorem [0 hold.

A

Assumption 4. The spinor 744" which on S is normal to S is extended off the initial

hypersurface in such a way that it is the spinorial counterpart of the tangent vector to a



Chapter 3. A geometric invariant characterising Kerr-Newman initial data 85

congruence of g-geodesics. Accordingly one has that Kap = 0 — that is, the acceleration

vanishes.

The second of these holds without loss of generality.

3.4.2.1 Decomposing Haapc =0

Splitting the expression 0 Hy apc into irreducible parts and using the definitions

(3.21a))-(3.21c]) gives that the condition H 4 4pc = 0 is equivalent to

§apcp =0, (3.24a)

2
Prap = —ngB- (3.24b)

Equation ([3.244)) is a condition intrinsic to the hypersurface while (3.24b]) is extrinsic —

i.e. it involves derivatives in the direction normal to . Also, observe that the conditions

(3.24a)) and (3.24b|) are essentially the equations (3.19al) and (3.19b)).

3.4.2.2 Decomposing Vg Haapc =0

If Hyape = 0 on S, it readily follows that DppHa apc = 0 on §. Thus, in order
investigate the consequences of the second condition in (3.18a]) it is only necessary to

consider the transverse derivative PH 4 sgc. It follows that
Al Al A
0" PHuarapc = P(p” Harape) — HarapcPTo
and so as Ha apc|s = 0, the irreducible parts of TDA/PHA/ABC = 0 are given by

P&apcp =0, (3.25a)

2
P’rap = —§P§AB- (3.25b)
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Taking equation (3.25a]) and commuting the D45 and P derivatives, and using equations
(3.24a)) and (3.24b)), gives

P&apcp = PDapkcp)

1 2
= 20" ypokpyr — g&QABCD + gQF(ABch)F

2 ~
- gD(Asﬁcm —20(4p9cp)-

Substituting for the derivative of {4p using (3.22c)), and using equations (3.24al) and
(13.24bf) again, gives

Péapcp =4V 4pckpyr = 0. (3.26)

To re-express condition (|3.25bf), the following result obtained by commuting the P

and Dyp derivatives will be useful:

3 ~ 1
Péap = §HCD‘I’ABCD — 300405 — 3K¢an (327
3.27

1 3
+ §QABCD§CD - §DC(A73/€B)C-

Recall that the Killing spinor candidate kap satisfies the homogeneous wave equation

(3.3b)). Using the space-spinor decomposition relations ([1.16|) and ((1.17)), the wave oper-

ator can be split into Sen and normal derivative operators. The result is:

1 2
P’kap = — 26°PUapcp + gKABﬁ + gQABf —2K1%p) o
4
- gQ(ACEB)C + KP¢apep +29PEapen

2

- K'PKAB - 3

4
Dapé + gD(Ach)C — 2Dcpéas“”

Applying conditions (3.24al) and (3.24b)) to the right hand side of the latter, evaluating

at S (where Q45 = 0) and setting K p = 0 gives

2 2 4
Piap = —2:“PVapcp + §K€AB - gDABf + §D(ACfB)C-
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Then, using equations (3.27) and (3.22b]), as well as (3.24a) and (3.24b)) as needed, it

can be shown that

2
P?kaB = —3Péan (3.28)

which is exactly the required condition. Thus, we have shown that the condition (3.25h))
is purely a consequence of the evolution equation for the Killing spinor candidate, along

with the conditions arising from Hx/apc|s = 0.

C

In summary, if kK 4p satisfies Ukap + VY apcpk D — 0, then the following are equivalent:

(i)  Huaapcls =PHuapcls =0
(i)  €aBep =0, Prap+36a=0, Y upcrpp=0.
3.4.2.3 Decomposing O,5 =0

As O 4B has no unprimed indices, it is already in a space-spinor compatible form:

@AB = IQ(ACQZSB)C =0. (329)

3.4.2.4 Decomposing Vg ©ap =0

If ©4p|s = 0, only the normal derivative PO 45 need be considered. Using the evolution
equation for the spinor ¢ 4p implied by Maxwell equations, equation (3.20al), along with
(3.24b)) in the condition PO a5 = 0 gives the spatially intrinsic condition

1
ka1 Depdip)” = §¢(AC€B)C (3.30)

In summary, assuming (3.24b)) holds, then the following are equivalent:

(i) ©apls =POapls=0
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(i)  wu%nc =0, K “Depdip®? = 364“En)c-

3.4.2.5 Decomposing S a5 =0

A point of departure for decomposing the condition S44/pp/|s = 0 is the relation linking
Saapp to ©4p and the derivative of H4/apc given by equation (3.8]). Splitting the

derivative of H44pc into normal and tangential parts gives
. I ¢ DC
Saapp = —604pOap + 57 (aPHpnyapc + Tpa D™ Hpyapo- (3.31)

We already have conditions ensuring that O ap|s = Haapcls = PHarapcls = 0, and

so as a consequence we automatically have that Saapp|s = 0.

3.4.2.6 Decomposing Vg Saapg =0

Again as Saapp’|s = 0, one only needs to consider the normal derivative PSsa pp’.
Taking the normal derivative of equation (3.31]) and using the Gaussian gauge condition

(Kap = 0) gives that on S:

PSanpp =—6PoapOap — 6045 POAp + 74 P> Hpnapc

-+ TD(A/PDDCHB/)ABC.

The first and second terms on the right hand side are zero as a consequence of condi-

tions (3.29) and (3.30). The last term can be also shown to be zero by commuting the

derivatives and using (3.24a), (3.24b)) and (3.26]). This leaves

0 - PSAA’BB’ = TC(A’P2HB’)ABC- (332)
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Eliminating the primed indices by multiplying by factors of 744/ gives
i) P*Ha apip) = 0

Thus, if this condition is satisfied on S, then it follows that PSaapp/|ls = 0. In the
following we investigate further the consequences of this condition. As in a Gaussian

gauge P14 = 0 it readily follows that
Al
P2 <T(C| HA/AB|D)) =0.
Splitting into irreducible parts, one obtains two necessary conditions:

P*¢acp =0, (3.33a)

2
p? <7>w ; 35AB> 0. (3.33b)

Consider first condition (3.33a). Commuting the Sen derivative with one of the

normal derivatives produces

(P{ ABCD) ( ABRCD )

2
< (aBc’ Epyp — 20 AB¢CD QABCD§ - *QF(ABCfFD)

(AB§CD - gK Easep + QF (u€pepyr — Qs éopypr

+ D(AB,PKCD)>‘

The previous conditions on & can now be used to eliminate terms. For example, the

second term in the bracket is zero from conditions (3.29) and (3.30]). The fifth, sixth and
seventh terms vanish from (3.24a)) and (3.26)). Equations (3.24b]) and ([3.28)) ca be used to

replace the last term — alternatively, one can commute the derivatives, use the substitu-

tion and then commute back; the result is the same. From this substitution one obtains

a factor D 4pécp) inside the normal derivative, which can be replaced using (3.22c) —
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this equation is satisfied on the whole spacetime rather than just the hypersurface, so

taking normal derivatives of it is valid.

Proceeding as above, condition (3.33a)) can be reduced to
P*apcp =P (4% apc’ kpyr) = 0. (3.34)

Splitting the covariant derivatives in the Bianchi identity (1.7]) into normal and tangential

components gives the following space-spinor version:

PV apcp = —4¢ruD" Bécp) — 46asD" cdpyr — 2Dra¥pep)” -
One can use this expression to further reduce condition (3.34) to

Vpapcép)’ + 6¢A5F(AHEBDFC¢D)E (3.35)

+ 6$(ABHECDFD)¢EF + 364" Ppp¥ricn)” = 0.

This is an intrinsic condition on S.

Consider now the condition (3.33b). In order to obtain insight into this condition, we
will make use, again, of the wave equation ({3.3b)) for the spinor k4. Taking a normal

derivative of this equation, one obtains
P (DHAB + \I/ABCDRCD) =0.

Splitting the spacetime derivatives into normal and tangential parts and rearranging

gives

2 4
P (P*kap) = P(—26“PWapcp + gQABE - gQ(Ach)(J +20PEupep

2 4
~ KPrap — 5Dapg — gDC(AﬁB)C —2DcpéapP).

As before, previous conditions can be used to eliminate terms. The fourth and eight
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terms on the right hand side vanish due to (3.24a) and (3.26)). Also, equation (3.22b))

can be used to replace the seventh term — this is because the relation (3.22b]) holds on
the whole spacetime, and so one can take normal derivatives of it freely. These steps
give

2

2 2 2
P(P*kap) = 77<39(AC§B)C - §K§AB - gQABCD§CD + BDAB§>-

Alternatively, consider the second derivative of £4p, given by applying a normal deriva-
tive to equation (3.27)) — note that equation (3.27)) applies on the whole spacetime, so

one can take the normal derivative. This yields

3 ~ 1 1 1
P*ap =P <2HCD\IIABCD —30c(a0p)° — §QAB€ - gKfAB + §Q(AC§B)C

1 3 3 3
+ §QABCD§CD + ZQCDgABCD - §Q(ACDF§B)CDF - QDC(APF»‘B)C>-

As before, we can use the conditions (3.24a), (3.24b|), (3.26]) and (3.28]), and the identity
(13.22b)) to reduce this to

1
P*ap = 7’<3K§AB —Qu%p)c + Qupept? - DAB&)-
By comparing terms, it follows that
3 252
Plriap = =3P 8ab

which is exactly the second condition (3.33b)). So, no further conditions are needed to
be prescribed on the hypersurface — this condition arises naturally from the evolution

equation for the Killing spinor.
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3.4.2.7 Decomposing (44 =0

Recalling the definition of {44/, equation (3.12)), and the decomposition of the spacetime

covariant derivative given by ([1.16) and (|1.17]), one obtains

Caar = VP 4O4p

1
= §TBA/'P@AB — TCA/DCB@AB.

From conditions (3.29)) and (3.30)) it then follows that (44/|s = 0.

3.4.2.8 Decomposing Vgp(aa =0

Again, if (44/|s = 0 then one one only needs to consider the transverse derivative P4 4.

By definition one has that

PCan =PVP 4O4p
1
= 'P( - TCA/'DBC + 2TBA/'P)@AB

1
= §TBA/732@AB

where the last equation has been obtained by commuting the Sen and normal derivatives,

and using (3.30]). Therefore, the vanishing of the derivative of {44+ is equivalent to
P20 4p = 0.

under the assumption that (44//s = 0. Now, recalling the wave equation for O4p

(equation ([3.13])), notice that the right hand side vanishes on S as a consequence of

(3.24a)), (3.24b)) and (3.26]), so that one is left with

OO 4pls = 0.
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Finally, expanding the wave operator on the left hand side gives that on S,

0045 = V99VerOap
! 1 ! ].
= (—TBC DCB + 57'00 P) (—TBC/DBC + 2TC’C’7)> Oup

1 /
= ETCC T0cP*Oan

where the last line follows by commuting the derivatives where appropriate and using

conditions (3.29) and (3.30). As 7€ 7o = 2 by definition, we find that P20 45 = 0 as

a consequence of the evolution equation for © 4.

3.4.3 Eliminating redundant conditions

The discussion of the previous subsections can be summarised in the following;:

Theorem 7. Let kap denote a Killing spinor candidate on an electrovacuum spacetime

(M, g, F). If kap satisfies on a Cauchy hypersurface S the intrinsic conditions

§apcp =0, (3.36a)

Vpapckp)’ =0, (3.36b)

ka%bp)c =0, (3.36¢)

”(A|CDCD¢|B)D = %é(Ach)& (3.36d)
36" D" Vepypr + Y ianc" $pyr = 6rr" 5D  0dp)E (3.36¢)

+6¢apr”cD" pyoEF,
and its normal derivative at S is given by

2
Prap = —§€AB7

then kap 1s, in fact, a Killing spinor.
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Remark 19. Note that

Oap =k dpc =0 = ¢apxkap

Using this fact, it is possible to express (3.36d) and (3.36¢)) as a condition on the pro-

portionality factor relating the Killing spinor k4 and the Maxwell spinor ¢ 4p.

In order to simplify the conditions in Theorem [7] and to analyse their various inter-
relations, we proceed by looking at the different algebraic types that the Killing spinor

can have. First, consider the algebraically general case:

Lemma 12. Assume that a symmetric spinor kap satisfies the conditions

mABmAB #0, §ABCcD = ‘I’F(ABCHD)F = "“(AC¢B)C =0

on an open subset U C S. Then, there exists a spin basis {OA, LA} with o41* = 1 such

that the spinors kap and ¢ap can be expanded as

KAB = €°0(alp), GAB = PO(ALB)-

Furthermore, if Q = pe** is a constant on U, then conditions (3.36d) and (3.36¢) are

satisfied on U.

Proof. The first part of the lemma follows directly from xkapr?? # 0, and the fact that
H(AC¢B)C = 0 implies that ¢pap < k4p. The condition \I’F(ABC/‘GD)F = 0 also allows the

Weyl spinor to be expanded in the same basis:

VaBcD = Yo(a0BLetp).

To show the redundancy of (3.36d)) and (3.36€), the equation D 4prcp) = 0 will

be decomposed into irreducible components. To simplify the notation, use the D, A, §
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symbols from the Newman-Penrose formalism to represent directional derivatives:

DEOAOBDAB, AELALBDAB, 5EOALBDAB.

The irreducible components of D 4pkcp) = 0 then become:

o Do¢c =0, (3.37a)

1
o%boc = —§D%, (3.37b)
L“Dic — 0“Aog = 26, (3.37¢)

1
oo = §A%, (3.37d)
C —
(" Ave = 0. (3.37e)
Using these, one can show that
3
e *Eap = —30405.  dup — 3uaLgol dor + 50(4tB) (LFD[,F + OFAOF) )

In a similar way, using the electromagnetic Gauss constraint, equation (3.20b|), together

with the basis expansion for ¢4p, one obtains

0p + 2¢pdx =0 (3.38)

on S.

The spacetime Bianchi identity (1.7]) implies the constraint

DPU ypop = —20°PDepdan (3.39)

on S, of which we now wish to find the irreducible components. To find the basis

expansion of the Hermitian conjugate QAS AB, hote that:

~ ’_ A
040" = o4t 60 = TAn 0 N = Tk
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where k, = 0404/. As 7, is timelike and k, is null, this scalar product is non-zero, and

A in this basis as

so the pair {04,04} forms a basis. We expand the spinor ¢

A = g0t +b0

for some a,b € C. Contracting this with o4 gives 1/a = 0404 > 0, and so the basis

coefficient a is non-negative. Taking the Hermitian conjugate gives:
™ = —ao? + bo™.

Using the above expressions we can find the basis expansion of qg 4. Namely, one has

that:
~ 1
®AB = 5 (OALB + LAOB)
1 -~ o T~ A~
= 5@( 40A0B — G0A0B + 2b040R)

ob ©b %
STLALB + p(\a|2 + [b]*)or0B — ¥(|al2 + Q\b\Q)o(ALB).

Now, using the basis expansion for the Weyl spinor, contracting with combinations

of 0 and ¢+ and using the relations given in (3.37a))-([3.37¢) and (3.38)), the components

of (3.39) become

bw\ o4 Aoy

Dt + 3¢ Dsc = Mﬂﬂ|2+mM)D +
B 12b|g0|
(12

(laf* + [b]*)e* Dea,

A¢+wﬂxzm|(whnw%A

3bp 3b@
-+ 30052 = =20 (a4 220 — 22 (a2 4 p20p - L2

Exploiting the conditions (3.37af)-(3.37¢) and the expansions of the Maxwell and the

Bianchi constraints, condition (3.36€]) can be decomposed into the following non-trivial
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irreducible parts:

bp
= (Dg + 2¢D3) = 0
22 (Dp +2pDx) =0,

5 (laf* +2]b) (D + 2¢D30) = 0,
Z(lal® + 20b*) (Ap + 2085) = 0,
.

3 (lal® + [bI*) (Ap + 200) = 0.

Assuming ¢ # 0, these conditions along with the Maxwell constraint (3.38)) are equivalent

to the following basis-independent expression, also independent of the value of a and b:
Dapp +2¢Dapx =0.
The latter can be written as
Dug (goeu) =D =0.

Therefore, under the hypotheses of the present lemma, equation (3.36€) is equivalent to
the requirement of £ being constant in a domain U C S. In a similar way, substituting
the above relations in equation (3.36d)) and splitting into irreducible parts gives the

following set of equivalent conditions:

e (D +2¢Dsx) =0,
e” (Ap + 2pAx) =0,

e” (0o +2pdsx) = 0.

As e* is non-zero, this set of conditions is again equivalent to the constancy of 9 in

Uucs. O

Next, consider the case when the Killing spinor is algebraically special:
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Lemma 13. Assume the symmetric spinor kap satisfies the conditions

kapkP =0, kapkP £ 0, §ABCD = ‘I/F(ABCKD)F = F&(AoqﬁB)c =0

on an open subset U C S. Then, there exists a normalised spin basis {0, 14} such that

the spinors kap and ¢ap can be expanded as
KAB = €7 040p, GAB = POAOB.

Furthermore, the equations (3.36d|) and (3.36€) are satisfied on U C S.

Proof. The first part of the lemma follows directly from the hypothesis kapr? =

0, kapRAE #£ 0, and the fact that R(ACqﬁB)C = 0 implies ¢ap x Kap. The condi-
tion \I’F(ABCHD)F = 0 also allows the Weyl spinor to be expanded in the same basis
as

VY ABcD = 1040BOCOD.

In this basis, the components of the equation D 4prcp) = 0 become

oADoA =0,
Dsc+ 404604 + 204 Doy = 0,
O + oAAoA + 2LA(50A =0,

A+ ZLAAOA =0.
Using these relations one can show that

e "Eap = 30a0p0” Ao — 6o(atpyo”doc.

The Maxwell constraint, equation (3.20bf), on S is equivalent to

D¢ — ¢p D — 6004 = 0,
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and the o 4ty component of the Bianchi constraint

D P ypop = —26°PDepdas

on &, as a consequence of the previous relations, is equivalent to the following condition:

lp|202 Ao — 2b|p|?01b04 = 0.

Then, by substituting all the relevant basis expansions into (3.36dl) and (3.36€]), and split-

ting the equations into irreducible parts, one finds that both conditions are automatically

satisfied as a result of the above relations. O

We round up the discussion of this section with the following electrovacuum analogue

of Theorem 4 in [4]:

Lemma 14. Assume that one has a symmetric spinor kap satisfying the conditions
Diapkcp) = Yrapckp)’ =k opc =0
on the Cauchy hypersurface S and that the complex function
Q% = (HABHAB)2 dapd™?

is constant on S. Then the domain of dependence, DT (S), of the initial data set

(8,9, K, F) will admit a Killing spinor.

Proof. Let U; be the set of all points in & where kApkAB % 0 and Uy be the set of all
points in S where k4R # 0. The scalar functions kapr?? : S — C and kagrAE :
S — R are continuous. Therefore, U; and Us are open sets. Now, let V; and Vs denote,

respectively, the interiors of S \ Uy and V; \ Us. On the open set Vi NUs, we have that

kapkAP = 0 and kapRAP # 0. Hence, by Lemma the conditions (3.36d)) and (3.36€])

are satisfied on Vi NUy. Similarly, by Lemma conditions (3.36d)) and (3.36€) are
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satisfied on U;. On the open set Vs, we have that k4p = 0 and therefore (3.36d)) and
(3.36€) are trivially satisfied on Vs. Using the above sets, the 3-manifold S can be split
as

intS =U; U (Vl ﬂZ/{Q) U Vo U U U OVs.

By hypothesis, all terms in conditions (3.36d)) and (3.36€]) are continuous, and the con-

ditions themselves are satisfied on the open sets U, Vo and Vi NUs. By continuity,
the conditions are also satisfied on the boundaries 0lf; and dVs. Therefore, (3.36d|) and
(3.36€)) are satisfied on int S, and by continuity this extends to the whole of S. O

3.4.4 Summary

The calculations from the current section can be summarised in the following theorem:

Theorem 8. Let (S,h, K, F) be an initial data set for the Einstein-Maxwell field equa-

tions where S is a Cauchy hypersurface. If the conditions

£apep =0, (3.402)

Vrapckp)’ =0, (3.40b)

Kby =0, (3.40¢)

0% = (/-@ABHAB)Q dpApdE = constant, (3.40d)

are satisfied on S, then the development of the initial data set will admit o Killing spinor
in the domain of dependence of S. The Killing spinor is obtained by evolving (3.3b|) with

initial data on S satisfying the above conditions and

2
Prap = _ngB-
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3.5 The approximate Killing spinor equation

In the previous section, conditions on an initial data set for the Finstein-Maxwell equa-
tions were identified that guarantee the existence of a Killing spinor on the resultant
spacetime — see Theorem Together with the characterisation of the Kerr-Newman
spacetime given by Theorem [5] this provides a way of characterising initial data for the
Kerr-Newman spacetime. The key equation in this characterisation is the spatial Killing
spinor equation

D(ABFLCD) = 0.

As it will be seen in the following, this equation is overdetermined and thus, admits no
solution for a generic initial data set (S, h, K, F'). Following the discussion of Section 5
in [6], this section will show how to construct an elliptic equation for a spinor k4 p over
S which can always be solved and which provides, in some sense, a best fit to a spatial
Killing spinor. This approximate Killing spinor will be used, in turn, to measure the
deviation of the electrovacuum initial data set under consideration from initial data for

the Kerr-Newman spacetime.

3.5.1 Basic identities

First, we will briefly discuss the basic ellipticity properties of the spatial Killing equation.
In what follows, let &(45)(S) and &(4pcp)(S) denote, respectively, the space of totally
symmetric valence 2 and 4 spinor fields over the 3-manifold S. Given uap, vap €
SaB)(S), CaBcp, xaBcp € Sapep)(S) one can use the Hermitian structure induced

on S by 744" to define an inner product in Sap)(S) and &(4pcp)(S), respectively, via

(me, V>25/SMABDAB<1M, <C,X>2E/SCABCD>?ABCDdu (3.41)

where du denotes volume form of the 3-metric h.



Chapter 3. A geometric invariant characterising Kerr-Newman initial data 102

Let now ® denote the spatial Killing spinor operator

P : Sap)(S) — Spcp)(S),  P(k) =Dpkcp).-

The inner product (3.41)) allows one to define ®* : & 4pcp)(S) — S (ap)(S), the formal

adjoint of ®, through the condition

(@(K), )2 = (K, 2*(C))2-

In order to evaluate the above condition one makes use of the identity (obtained using

integration by parts)

/ APk pepds = / DAB Py peopdp — / KABDODC popdu
ou u u (3.42)

+ / 264P0CPE [\ Cpeppdp
u

with &4 C S and where dS denotes the area element of OU, nap is the spinorial coun-
terpart of its outward pointing normal and (4pcp is a totally symmetric spinorial field.

Now, observing that

(@(K),C)2 Z/SD(ABRCD)EABCDdM

= / DaproplAPCPdy,
S

it follows then from the identity (3.42]) that

*(¢) = P*PCupcp — 2987 ((pyapr-

Definition 3. The composition operator L = ®* o ® : &45)(S) — Sap)(S) given by

L(FL) = DABD(ABKCD) - QABF(AD‘DF‘HB)C - QABF(ADB)FHCD (3.43)
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will be called the approrimate Killing spinor operator and the equation
L(k)=0

the approrimate Killing spinor equation.

Remark 20. A direct computation shows that the approximate Killing spinor equation

(3.43)) is, in fact, the Euler-Lagrange equation of the functional

JE/'D(ABHZCD)'DWDCZ,U,.
S

3.5.2 Ellipticity of the approximate Killing spinor equation

The key observation concerning the approximate Killing spinor operator is given in the
following:

Lemma 15. The operator L is a formally self-adjoint elliptic operator.

Proof. 1t is sufficient to look at the principal part of the operator L given by
P(L)(k) = D*PDaprcp).

The symbol for this operator is given by

or(§) = ¢ apken)

where the argument {4p satisfies {ap = {(ap) and éAB = —€ap —ie. & is a real
symmetric spinor. Also, define an inner product (,) on the space of symmetric valence-2
spinors by

<£7 TI> = EABT]AB-
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The operator L is elliptic if the map

or(€) s kap — E°PEcpkap

is an isomorphism when |£|? = (£,€) # 0. As the above mapping is linear and between
vector spaces of the same dimension, one only needs to verify injectivity — in other words,
that if {ABf(ABFcCD) =0, then kap = 0. To show this, first expand the symmetrisation
to obtain

—kepl€]* — (€, K)écp + 26 B¢cprap + 26" BEpprac = 0,

where the reality condition E 4B = —&ap has been used. Note also that the spinorial

Jacobi identity implies that

1
¢1P¢op = —5oc g

which reduces the above equation to

3kepl€]? + epl€, k) = 0.

Contracting this with 7, and using the conjugate symmetry of the inner product, we
obtain

3|kI71€]* + (€, k)* = 0.

Both of these terms are positive, and so the equality can only hold if each term vanishes
individually. Taking the first of these, one sees that when |£]? # 0, we must have |k|? = 0.
This is equivalent to kap = 0, completing the proof of injectivity and establishing the

ellipticity of L. O
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3.6 The approximate Killing spinor equation in asymptot-

ically Euclidean manifolds

Now that the elliptic character of the approximate Killing spinor equation has been
established, we can now move on to discuss the construction of a solution of the approx-
imate Killing spinor equation, equation , in asymptotically Euclidean manifolds.
The main conclusion of this section is that for this type of initial data set for the Einstein-

Maxwell equations it is always possible to construct an approximate Killing spinor.

3.6.1 Weighted Sobolev norms

The discussion of asymptotic boundary conditions for the approximate Killing equation
on asymptotically flat manifolds makes use of weighted Sobolev norms and spaces; here,
the necessary terminology and conventions to follow the discussion will be established,

following those laid out in [§].

For a point p € S, define the function o : § — R by

N

o(x) = (1 + d(p, :1:)2)

where d is the Riemannian distance function on §. Using this, define the following

weighted L? norm, for § € R:

1
2
s = ( / ru\%?“dx)
S

For example, the choice § = —% gives the usual L? norm. Similarly, let H § with s a

non-negative index denote the weighted Sobolev space of functions for which the norm

0= > I Dul5_ja)

0<|al<s

I |
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is finite, where a = (o, a2, a3) is a multi-index and |a| = a1 + oo + ag. We say that
the function v € Hg° if u € H§ for all s. Furthermore, a spinor or a tensor is said to
belong to a function space if its norm does — so, for instance (4p € Hj is a shorthand
for ((ABEAB +CAAfBB)1/2 € Hj. A property of the weighted Sobolev spaces that will be
used repeatedly is the following: if u € H5°, then v is smooth (i.e. C* over &) and has
a fall off at infinity such that D%u = 0(7“5_")") In a slight abuse of notation, if v € Hg®

then we will often say that u = 0, (r?) in a given asymptotic end.

3.6.2 Asymptotically Euclidean manifolds

The remainder of this chapter will concern Einstein-Maxwell initial data sets with a
specific asymptotic behaviour, imposing a restriction on the class of such initial data

sets. The Einstein-Maxwell constraint equations are given by

r— K2+ Kinij = 2p,
D'Kij — DiK = ji,
D'E; =0,

D'B; =0,

where D; denotes the Levi-Civita connection of the 3-metric h, r is the associated Ricci
scalar, K;; is the extrinsic curvature, K = K, p is the energy-density of the electro-
magnetic field, j; is the associated Poynting vector and F; and B; denote the electric
and magnetic parts of the Faraday tensor with respect to the unit normal of S. The

following restriction on this data will be assumed:

Assumption 5. The initial data set (h, K, E, B) for the Einstein-Mazwell equations is

asymptotically Reissner-Nordstrom in the sense that in each asymptotic end of S there

'Recall that the small o indicates that if f(z) = o(z™), then f(z)/z™ — 0 as z — 0.
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exist asymptotically Cartesian coordinates (z®) and two constants m,q for which

hap == (14 2) s+ 077, (3.442)
T
Kop = 000(r7%/?), (3.44D)
_ 9Ta ~5/2
Ea = 7“73 + 000(7" / ), (344C)
Ba = 000 (r™%/?). (3.44d)

Remark 21. The asymptotic conditions spelled in Assumption [5] ensure that the total
electric charge of the initial data is non-vanishing. In particular, it contains standard
initial data for the Kerr-Newman spacetime in, say, Boyer-Lindquist coordinates as an
example. More generally, the assumptions are consistent with the notion of stationary

asymptotically flat end provided in Definition

Remark 22. The above class of initial data is not the most general one could consider.
In particular, conditions ({3.44a))-(3.44d)) exclude boosted initial data. In order to do so
one would require that

Kop = 000(7*3/2).

The Einstein-Maxwell constraint equations would then require one to modify the leading
behaviour of the 3-metric hog. The required modifications for this extension of the

present analysis are discussed in [6].

3.6.3 Asymptotic behaviour of the approximate Killing spinor

We can now discuss the asymptotic behaviour of solutions to the spatial Killing spinor
equation on asymptotically Euclidean manifolds of the type described in Assumption
The strategy for doing this will be to first consider the behaviour of the Killing spinor in
the exact Kerr-Newman spacetime; then, impose the same asymptotics on solutions to
the approximate Killing spinor equation on slices of a more general spacetime. In what

follows, the analysis will be focussed on the asymptotic end of the spacetime.
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3.6.3.1 Asymptotic behaviour in the exact Kerr-Newman spacetime

For the exact Kerr-Newman spacetime with mass m, angular momentum a and charge
q it is possible to introduce a NP frame {l% n® m? m®} with associated spin dyad

{OA, LA} such that the spinors k4B, ¢ap and ¥ pcp admit the expansion
KAB = ¥0(ALB); bAB = PO(ALB); VaBcD = Yo(40BLCLD),
with
7= g(r —iacos®),

_ q
7T (r —iacosf)?’

6 2
¥ = g™
(r —iacosf)? (r+iacos€ ) ’

where r denotes the standard Boyer-Lindquist radial coordinate — see [3] for more details.
A further computation shows that the spinorial counterpart, €44, of the Killing vector

&% takes the form
§aar = —g%(,quéA/ — TOALA" + TLAOA, — PLALAY) (3.45)
where the NP spin connection coefficients p, w, 7 and p satisfy the conditions
nx = s, Tn = um, px = xp

which ensure that £ 4 4 is a Hermitian spinor —i.e. €44/ = £44/. Despite the conciseness of
the above expressions, the basis of principal spinors given by {OA, LA} is not well adapted

to the discussion of asymptotics on a stationary end of the Kerr-Newman spacetime.

From the point of view of asymptotics, a better representation of the Kerr-Newman

spacetime is obtained using a NP frame {I'*, n'*, m/® m'®} with associated spin dyad
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{o'4, //4} such that

7O — l/a + nla — ﬁ(at)a7

where the vector 7% is the tensorial counterpart of the spinor A4 Writing this in the
spinorial basis gives

! ’ ’
A = g AgA AT (3.46)

Notice, in particular, that from the above expression it follows that /4 = o A As T =

V/2€ 447, one can use the expressions ([3.45)) and (3.46)) to compute the leading terms of the

Lorentz transformation relating the NP frames {I*, n® m®, m®} and {I'*, n'*, m'*, m/'*}.

In what follows it will be convenient to denote the spinors of the basis {04, //4} in

the form {e44} where

Moreover, let kap = eaegPrap denote the components of k4p with respect to the

basis {e4“}. Tt can then be shown (through a long computation) that for Kerr-Newman

initial data satisfying the asymptotic conditions (3.44a))-(3.44d]) one can choose asymp-
totically Cartesian coordinates (z®) = (!, 22, 23) and orthonormal frames on the asymp-

totic ends such that

V2 2v/2m

KAB = :F?-TAB F 3, rTAB + 000(7“_1/2)7 (3.47)
with
1 —zb +iz? 23
TAB = ——=
V2 a3 b+ ix?

From the above expressions one finds that on the asymptotic ends

€ =£V2+ 00 (r~1/?),

€aB = 000 (r /%)

)

A

where 4B = eaepPéap. Moreover, for any electrovacuum initial data set satisfying
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the conditions (3.44al)-(3.44d|) a spinor of the form ([3.47)) satisfies

DiaBKCD) = 0o (17/?).

3.6.3.2 Asymptotic behaviour for non-Kerr data

Not unsurprisingly, given electrovacuum initial data satisfying the conditions (3.44a))-

(3.44d)), it is always possible to find a spinor k4p consistent with the expansion (3.47)

in the asymptotic region. More precisely, one has:

Lemma 16. For any asymptotic end of an electrovacuum initial data set satisfying

(3.44a)-(3.44d)) there exists a spinor kap such that
V2 2v/2m

KAB = F+—52AB F+

3 3 TAB + Ooo(T_l/Z)

with

E=+V2+ 000(7“_1/2)7

£AB = 00o(r7Y?)

9

EABCD = 000(r%/?).

(3.48a)
(3.48D)

(3.48¢)

The spinor kA is unique up to order ooo(rfl/Q), up to the addition of a constant term.

Proof. The proof follows the same structure of Theorem 17 in [6], where the vacuum

case is considered. The argument goes as follows: first, substitution of the expansion for

kap given yields the asymptotic behaviours in (3.48al)-(3.48¢)), and so all one is required

to show is that this expansion is unique. To do this, let K4p be a spinor satisfying the

conditions of the lemma, define

o \/i 2\/§m
KAB = :F?Q/'AB + 3

TAB,
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and consider koB = kaB — i AB- To obtain the desired result, one need only show that
kaB = CaB+ ooo('rfl/ 2), for Cap a constant spinor. This is equivalent to showing that
Dapkep = ooo(r_?’/ 2), a coordinate independent statement. This is done by evaluating
the asymptotic behaviour of the right hand sides of equations — (using the
additional fact not present in the vacuum case that the Maxwell spinor ¢pap = 000 (r2),
a consequence of —) and integrating to obtain stronger asymptotic decay
behaviour for ¢ and £4p. As these are the irreducible components of Dygrep, this
gives the required result (these calculations are identical to the those in Theorem 17 in

). O

In the analysis of the construction of a solution to the approximate Killing spinor
equation, it is crucial that there exist no nontrivial spatial Killing spinors that go to zero

at infinity. More precisely, one has the following;:

Lemma 17. Let vap € Hfol/z be a solution to Dapvcopy = 0 on an electrovacuum

initial data set satisfying the asymptotic conditions (3.44al)-(3.44d)). Then vap = 0 on
S.

Proof. From Lemma[IT]one can write DapDopDrrrca as a linear combination of lower
order derivatives, with smooth coefficients. Direct inspection shows that the coefficients
in this linear combination have the decay conditions to make use of Theorem 20 from [6]

with m = 2. It then follows that v4p must vanish on S. L]

3.6.4 Solving the approximate Killing spinor equation
Consider now solutions to the approximate Killing spinor equation of the form:
KAB = kAB + 04B, OB EHE‘H/Z (3.49)

with £ 4p the spinor discussed in Lemma For this ansatz one has the following;:
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Theorem 9. Given an electrovacuum asymptotically Euclidean initial data set (S, h, K, E, B)

satisfying the asymptotic conditions (3.44al)-(3.44d)), there exists a smooth unique solu-
tion to the approximate Killing spinor equation (3.43|) of the form (3.49).

Proof. The proof is analogous to that of Theorem 25 in [6]; it is presented for complete-

ness, as it is important for the main result of this chapter.

Substitution of the Ansatz (3.49) into equation ({3.43)) yields the equation
L(0ap) = —L(kap) (3.50)

for the spinor 645. Due to elliptic regularity, any solution to the above equation of class
H31/2 is, in fact, a solution of class Hﬁ/2. Thus, if a solution #4p exists then it must be

smooth. By construction — see Lemma f it follows that D sprcp) € H™ /2 80 that
Fap = —L(/%AB) € HS%/Q

In order to discuss the existence of solutions we make use of the Fredholm alternative for
weighted Sobolev spaces. In the particular case of equation (3.50) there exists a unique

solution of class H 31 /2 if

/ FappABdu =0
S

for all vap € HEI/Q satisfying
L*(vep) = L(vep) = 0.

It will now be shown that a spinor v4p satisfying the above must be trivial. Using the

identity (3.42) with Capcp = Dapvep) and assuming that L(vop) = 0 one obtains

/SDABVCDD(ABVCD)dN:/aS nABz/CDD(ABVCD)dS

where 0S,, denotes the sphere at infinity. Now, as vap € Hgl /2 by assumption, it
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follows that Daprep) € HE%/z and that

—

nPvPDprop) = o(r™?).

The integration of the latter over a finite sphere is of order o(1). Accordingly, the integral

over the sphere at infinity 0S., vanishes and, moreover,
/S'DABZ/CD'D(A/B-U\CD)d,u =0.
Thus, one concludes that
Dapvepy =0 over S

so that v4p is a Killing spinor candidate. Lemma [17] shows that there are no non-trivial

Killing spinor candidates that go to zero at infinity.

It follows from the discussion in the previous paragraph that the kernel of the approx-
imate Killing spinor operator is trivial and that the Fredholm alternative imposes no
obstruction to the existence of solutions to . Thus, one obtains a unique solution
to the approximate Killing spinor equation with the prescribed asymptotic behaviour at

infinity. O

3.7 The geometric invariant

Now that a process for constructing an approximate Killing spinor on an initial data
set with asymptotic behaviour given by (3.444a)-(3.44d]) has been outlined, we can use
this spinor to construct an invariant measuring the deviation of the initial data set from

initial data for the exact Kerr-Newman spacetime.

In the following let k4p denote the approximate Killing spinor obtained from Theo-
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rem [0} and let

J= / DiaprcpyDABROD Ay,
S

I E/ U (apc’ hp)pPABCCRD gy,
S

12 E/ @AB@d/J,,
S

I3 = / D4’ DABQ2dy,
S
where following the notation of Section one has

Oup = QH(AQ¢B)Q, QQ = (HABHAB)2 ¢AB¢AB-

The above integrals are well-defined due to the following result:

Lemma 18. Given the approzimate Killing spinor kap obtained from Theorem[9, one
has that
J, Iy, Is, Is < oo.

Proof. By construction one has that the spinor k45 obtained from Theorem [J] satisfies
Dapkcpy € H93/2. It follows then from the definition of the weighted Sobolev norm
that

Viapkcp) l|r2 = J < o0.

| Veasreny o, =1l ¥

To verify the boundedness of Iy, notice that by assumption Wapcp € H>3, . and kap €
H?PS,; it follows by the multiplication properties of weighted Sobolev spaces (see e.g.

Lemma 14 in [6]) that

F
Yapc' kpyr € HZ3)9,
so that, in fact, [ < oo.

We now look at the boundedness of I5. By construction and due to the asymp-

totic conditions (3.44a))-(3.44d]), one can choose asymptotically Cartesian coordinates
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and orthonormal frames on the asymptotic ends such that the approximate Killing spinor

and Maxwell spinor satisfy

V2
KAB = :F?fAB + 000 (7“1/2)

$AB = —o
V2r?

TAB + 0o (7'75/2)
Therefore,

©aB =K% B)Q

= 423;1313(AQ$B)Q + 0o <r_3/2)

= Oco (7‘73/2)

and so Oyp € HS%/Q, and Ir, < oo.

Finally, to show the boundedness of I3, note that in the asymptotically Cartesian

coordinates and orthonormal frames used above, we have

2 4 -
(kapr?P)” = g?A + 000 (7“ 7/2)

and so the quantity Q satisfies

Q= 8—21q2 + 000 (r_1/2>

Taking a derivative, one obtains
D% = 00 <7“73/2)

and therefore DypQ? € Hi%ﬂ and I3 < oo. O

Remark 23. As coordinate-invariant functions on the hypersurface S, dependent on
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the curvature of S, they may be related to topological invariants of the sub-manifold -

for example, Chern classes or other characteristic classes.

The integrals J, I, Is and I3 are then used to define the following geometric invariant:

I'=J+ 5L+ 1+ Is. (3.51)

Combining all of the results obtained so far gives the main result of this chapter:

Theorem 10. Let (S,h,K,E,B) denote a smooth asymptotically Euclidean initial
data set for the Finstein-Maxwell equations satisfying the on each of its two asymptotic
ends the decay conditions - with non-vanishing mass and electromagnetic
charge. Let I be the invariant defined by equation where kap 1s the unique solution
to equation with asymptotic behaviour at each end given by . The invariant I
vanishes if and only if (S, h, K, E, B) is locally an initial data set for the Kerr-Newman

spacetime.

Proof. The proof follows the same strategy of Theorem 28 in [6]. It follows from the
assumptions that if I = 0 then the electrovacuum Killing spinor data equations —
are satisfied on the whole of the hypersurface S. Thus, from Theorem |8 the
development of the electrovacuum initial data (S, h, K, E, B) will have a Killing spinor,

at least on a slab.

Now, the idea is to make use of Theorem [5 to conclude that the development will
be the Kerr-Newman spacetime. For this, one has to conclude that the spinor {44/ =

v ARB@ is Hermitian so that it corresponds to the spinorial counterpart of a real Killing

vector. By assumption, it follows from the expansions (3.48a))-(3.48¢c) that

§—§&= Ooo(r_1/2)’ §AB + éAB = Ooo('r_l/2)'

Together, the last two expressions correspond to the Killing initial data for the imagi-
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nary part of €44/ — thus, the imaginary part of €44/ goes to zero at infinity. It is well
known that for electrovacuum spacetimes there exist no non-trivial Killing vectors of
this type [12], [16]. Thus, {44/ is the spinorial counterpart of a real Killing vector. By
construction, £4 4/ tends, asymptotically, to a time translation at infinity. Accordingly,
the development of the electrovacuum initial data (S, h, K, E, B) contains two asymp-
totically stationary flat ends Mo, and ML generated by the Killing spinor k4. As the
Komar mass and the electromagnetic charge of each end is, by assumption, non-zero,
one concludes from Theorem [5| that the development (M, g, F') is locally isometric to

the Kerr-Newman spacetime. O

3.8 Conclusions

As a natural extension to the vacuum case described by Béckdahl and Valiente Kroon [6],
the formalism presented above for the electrovacuum case has similar applications and
possible modifications. For example, the use of asymptotically hyperboloidal rather than
asymptotically flat slices can now be analysed for the full electrovacuum case, applying
to the more general Kerr-Newman solution. In the next chapter, the arguments made
here will be modified to obtain necessary and sufficient conditions for the existence of a
Killing spinor in the future development of a pair of intersecting null hypersurfaces, as

opposed to a asymptotically flat spacelike hypersurface.

A motivation for the above analysis was also to provide a way of tracking the deviation
of initial data from exact Kerr-Newman data in numerical simulations. However, in order
to be a useful tool, one would still have to show that the geometric invariant is suitably
behaved under time evolution (such as monotonicity). As highlighted in [6], a major
problem is that it is hard to find a evolution equation for k4p such that the elliptic
equations is satisfied on each leaf in the foliation. If these issues can be resolved,
then this formalism may be of some use in the study of non-linear perturbations of the

Kerr-Newman solution and the black hole stability problem.



Chapter 4

Killing spinor data on

non-expanding horizons

4.1 Introduction

In a paper by Racz [47], it is shown that a spacetime admitting a pair of non-expanding,
shear-free null hypersurfaces H; and Ho (the union of which is shown to form a bifurcate
Killing horizon in Corollary 6.1) can be uniquely determined in the domain of dependence
of H1U%H2, once data has been prescribed on the intersection surface Z = HiNHy. This
set-up provides the basis for the characteristic initial value problem, and is useful for
investigating the behaviour of a black hole spacetime given data only on the horizons.
In fact, the set-up described in [47] can be considered to describe a general class of
stationary distorted electrovacuum black hole spacetimes — within the class of solutions
to the Einstein-Maxwell equations. Of course, the Kerr-Newman family of solutions is
an example of a family of exact solutions to the Einstein-Maxwell equations satisfying
these conditions, and so belongs to this class of solutions. One can ask what further
conditions are necessary to impose on the horizons in order to single out the Kerr-

Newman family from the more general class, and how restrictive these conditions are.

118
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Furthermore, as the only restriction on spacetimes in the class of distorted black hole
spacetimes is the presence of a single one-parameter group is isometries (generated by
the Killing vector associated to the bifurcate Killing horizon), the class is expected to
contain not just the Kerr-Newman solution but a large number of ‘nearby’ and similar
solutions. In particular, no assumption of made on the asymptotic behaviour of the
spacetime - only the geodesic completeness of the generators of the null hypersurfaces is
necessary. Therefore, this class is expected to contain the asymptotically flat stationary
electrovacuum spacetimes established by black hole uniqueness theorems, along with

spacetimes with other asymptotic properties.

In order to investigate possible conditions on H; U Ha, we can rely on the previously
established characterisation of the Kerr solution by Killing spinors. In Chapter |3] this
characterisation was used to identify the Kerr-Newman family of solutions exactly from
a larger class. Here, it is shown that it is possible to guarantee the existence of a Killing
spinor in the domain of dependence of the non-expanding horizons H;UHg by prescribing
data for the Killing spinor, and this data need only be given on the intersection surface
Z. The only restriction on the background spacetime is the prescription of the curvature

component Wy in terms of this initial data.

In this chapter, the analysis will be restricted to the vacuum case, attempting to
identify the Kerr family of solutions to the Einstein equations from the general class of
stationary distorted vacuum black hole spacetimes. A set of conditions will be found
which must be satisfied on the intersection surface Z to ensure the existence of a Killing
spinor on a neighbourhood of Z in the interior of the black hole, and then investigate
further conditions which must be given there to single out the Kerr solution. A key
obstacle is the fact that the natural asymptotic flatness conditions used in results like
Theorem [5| and Theorem cannot be used in the characteristic problem; constants

arising from local results must either be determined by hand, or by some other criterion.

The main result of this chapter (given in Theorem can be formulated as:
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Theorem. Let (M,g) be a vacuum distorted black hole. Given a spin basis {04, 14}
on the bifurcation surface Z, assume that there exist constants ¢, M € C such that the

following relations hold on Z:

ko = kg =0,

62Ii1 :52:‘{1 = 0,
Sy =M

Ri¥o = )

K1+ K1 =¢,

00k, + 2Usk; € R

where Ko, k1, ke are the basis components of a spinor kap with respect to the spin basis

{04 a}. Then, there exist two complex constants ¢ and | such that

in a neighbourhood O of the bifurcation surface, where H?> = HqpyH® is the contraction
of the self-dual Killing form with itself (see section for the full definition) and x is
the Ernst potential (see section|2.2.5.1|). Furthermore, if ¢ =1 and [ is real and positive,

then (O, g) is locally isometric to a member of the Kerr family of spacetimes.

Also, as in the previous chapter, the calculations in this chapter will make extensive
use of the zAct suite of tensor computer algebra packages, in order to speed up the
computation of large and unwieldy expressions. All of these calculations could be done
by hand; the software merely allows them to be done in an efficient and intuitive manner.

The details of the software are given in [43].

Overview

This chapter is structured as follows: first, in Section the construction of the char-

acteristic problem given in [47] is summarised. This construction will be used to define
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the distorted black holes considered in this chapter. In Section the wave equation
for the Killing spinor is decomposed into equations intrinsic to the horizons, providing a
system of transport equations for the components of the Killing spinor. Furthermore, by
finding a system of homogeneous wave equations for a collection of zero-quantity fields
and imposing appropriate initial data for the system, further conditions (differential and
algebraic constraints) can be found for the components of the Killing spinor and their
first derivatives on the bifurcate horizon Hi U Hs. In Section these conditions are
investigated further; it is shown that the conditions intrinsic to the bifurcation surface
Z imply a specific form for the Killing spinor components. Furthermore, the constraints
intrinsic to H1 or Ho are shown to satisfy ordinary differential equations along the gener-
ators of the relevant horizons, and so can be replaced with conditions on the bifurcation
surface, if not becoming redundant. In this way, conditions on the extended horizon
construction are reduced to conditions only on the bifurcation surface Z. In Section |4.5
the additional conditions required to fulfil the assumptions of Proposition [2] are inves-
tigated; in particular, it is shown that the requirement that the Killing vector £44/ is
Hermitian can be encoded as initial data on Hi U Hs. These conditions can be reduced
to conditions only on the bifurcation surface; this puts further restrictions on the form
of the Killing spinor components on Z. A detailed version of the main result is given
in subsection In Section 4.6} an explicit expression for the only non-trivial Killing
spinor component is given, satisfying the required conditions on Z; in doing so, a restric-
tion on the geometry of the bifurcation surface is obtained. Lastly, Section [£.7]illustrates
how the previously obtained conditions on Z are insufficient to completely isolate the
Kerr family from the larger class of ‘distorted’ black holes. Explicitly, it is shown that
‘distorted’ black holes with metrically spherical bifurcation surfaces include spacetimes
other than the Schwarzschild solution, thereby showing that the Kerr family is a strict

subset of the class of ‘distorted’ black hole spacetimes.
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Recap of notation and conventions

In what follows (M, g) will denote a vacuum spacetime. The metric g is assumed to have
signature (4, —, —, —). The Latin letters a, b, ... are used as abstract tensorial spacetime
indices while the Greek letters u, v, ... denote spacetime indices. The script letters
A, B, ... are used to denote angular coordinates. The Latin capital letters A, B, ... are

used as abstract spinorial indices.

Systematic use of the standard NP and GHP formalisms as discussed in [45] 55] will
be used in this chapter, along with standard NP and GHP notation and conventions. In
particular, if n is a smooth scalar on a 2-surface Z with spin-weight s, the action of the

0 and O operators on 7 is defined by

on=on+s@—pB)n, Om=0dn—s(a—p)n. (4.2)

One also has that

(00 —00)n =sKgn, (4.3)

where Kg denotes the Gaussian curvature of Z.

An alternative representation of the & and 0 operators is given via the construction
in Section 4.14 of [45]. In particular, by choosing an arbitrary holomorphic function z

the 2-metric o on Z can be given as
! (dz®dz +dz®dz) (4.4)
g = ——— z z z Z), .
PP

where P is a complex function on Z. For example, if Z is isometric to the unit sphere,
then P = %(1 + 2%); this is used later in section when the implications of Z being
isometric to S? with the round metric is investigated. More general 2-metrics that are
conformally related to the round metric (i.e. o = Q%2042) will have their corresponding

P functions rescaled by the conformal factor 2.
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7‘[1 HZ

Z

Figure 4.1: The set up for the characteristic initial value problem. The two
non-expanding, shear-free null hypersurfaces H; and Ho form a
bifurcate Killing horizon, intersecting at the spacelike 2-surface
Z. O represents a neighbourhood of Z in D(H; U Hs).

In terms of the holomorphic coordinate function z on Z, the operators & and 0 —

acting on a scalar n of spin-weight s — are defined as (see (4.14.3)-(4.14.4) in [45])

on=prPP° 0

9z

(P').  By=PP (4P ). (4.5)

As the complex coordinates z and Z have zero spin-weight, it is easy to verify that

and that
0P =0, 0P =0.

4.2 The characteristic initial value problem on expansion

and shear-free hypersurfaces

In [47], by adopting and slightly generalising results of Friedrich in [26], a systematic
analysis of the null characteristic initial value problem for the Einstein-Maxwell equations
in terms of the Newman-Penrose formalism was performed. In particular, a procedure to

obtain a system of reduced evolution equations forming a first order symmetric hyperbolic
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system was outlined. Moreover, it was shown that the solutions to these evolution
equations imply, in turn, a solution to the full Einstein-Maxwell system provided that the
inner (constraint) equations on the initial null hypersurfaces hold. For this setting, the
theory for the characteristic initial value problem developed in [48] applies and ensures

the local existence and uniqueness of a solution of the reduced evolution equations.

These general results were then used to investigate electrovacuum spacetimes (M, g, F')
possessing a pair of null hypersurfaces H; and Ho generated by expansion and shear-free
geodesically complete null congruences, with intersection on a two dimensional spacelike
hypersurface Z = H1 N Hs. The configuration formed by Hi and Hs constitute a bifur-
cate horizon. In general, the freely specifiable data on Z does not possess any symmetry
in addition to the horizon Killing vector (implied by the non-expanding character of the
horizons). Thus, these spacetimes constitute the generic class of stationary distorted
electrovacuum spacetimes. The key observation resulting from the analysis in [47] is, for

the vacuum case, summarised in the following:

Theorem 11. Suppose that (M, g) is a vacuum spacetime with a vanishing Cosmolog-
ical constant possessing a pair of null hypersurfaces Hi and Hy generated by expansion
and shear-free geodesically complete null congruences, intersecting on a 2-dimensional
spacelike hypersurface Z = Hy N Hao. Then, the metric g is uniquely determined (up
to diffeomorphisms) on a neighbourhood O of Z contained in the domain of dependence
D(H1 N Hs) of Hi and Ha, once a complex vector field (A (determining the induced

metric o on Z) and the spin connection coefficient T are specified on Z.

4.2.1 Summary of the construction

Further information regarding the construction of the characteristic setup in [47] will
be required for the analysis in this chapter. Throughout, let (M, g) denote a vacuum
spacetime and let H; and Hz denote two null hypersurfaces in (M, g) intersecting on a

spacelike 2-surface Z.
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Remark 24. In the rest of this section, the topology of Z will not be relevant for the
discussion. The situation will, however, change when attempting to single out the Kerr

spacetime.

Let n® denote a smooth future-directed null vector on Z tangent to Ho, which is
extended to Ho by requiring it to satisfy n®Vyn, = 0 on Ho. Moreover, let u be an
affine parameter along the null generators of Hs, so that v = 0 on Z and Z, are the
associated 1-parameter family of smooth cross sections of Ho. Choose a further null
vector [* as the unique future-directed null vector field on Hy which is orthogonal to
the 2-dimensional cross sections Z, and satisfies the normalisation condition ng,* = 1
Consider now the null geodesics starting on Ho with tangent [*. Since Ho is assumed
to be smooth and the vector fields n® and [* are smooth on Hs by construction, these
geodesics do not intersect in a sufficiently small open neighbourhood @O C M of Hs.
Let r denote the affine parameter along the null geodesics starting on Ho with tangent
[*, chosen such that » = 0 on Hy. By construction one has that (¢ = (0/0r)%, and the
affine parameter defines a smooth function r : O — R. The function Ho — R defined by
the affine parameter of the integral curves of n® can be extended to a smooth function

u : O — R by requiring it to be constant along the null geodesics with tangent [°.

This construction is complemented by choosing suitable coordinates (xA) on patches
of Z and extending them to O by requiring them to be constant along the integral
curves of the vectors {* and n®. In this manner one obtains a system of Gaussian null
“)

coordinates (x*) = (u,r,z”*) on patches of O@. In each of these patches the spacetime

metric g takes the form

g = goodu ® du + (du ® dr + dr ® du)

+ goa(du ® dz? + dzt ® du) + gapdz? ® dzP,
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where goo, goa, gaB are smooth functions of the coordinates (z#) such that

goo = goa =0, on Ho,

and g4p is a negative definite 2 x 2 matrix. Observe that by construction

HiNO={(a") € O|u=0l,

HoNO ={(a*) € O|r=0}

In the following analysis, it will be convenient to consider the components of the con-

travariant form of the metric associated to the line element given above. A calculation

shows that
0 1 0
(") = 1 g1t ng
0 gAl g.AB

The metric functions ¢!, ¢"* and ¢*P can be conveniently parametrised in terms of

real-valued functions U, X“ and complex-valued functions w, ¢** on O such that
g =2U -ww),  gM=XA - @Al g = (AT + T,
Accordingly, setting
=M, =8t UGN+ XA 4", mHt = whi + Ao,

one obtains a complex (NP) null tetrad {i* n® m® m*} in O. As a result of the

vanishing of gggp and gg4 on Hso, one has that
U:XA:w:O, on Hs.

It follows from the previous discussion that m® and m® are everywhere tangent to the

sections Z, of Hs. In general, the complex null vectors m® and m* are not parallelly
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propagated along the null generators of Ho.

Associated to the NP null tetrad {I%, n%, m®, m®} in O one has the directional deriva-

tives

0
D e
0 0 40
9 40
) OJE‘FCW

Remark 25. By construction, one has that D is an intrinsic derivative to H; pointing
along the null generators of this hypersurface. Similarly, A is intrinsic to Hg and points
in the direction of its null generators. Finally, {0,6} are differential operators which
on Hs are intrinsic to the sections of constant u, Z,. Observe, however, that while ¢
restricted to H; is still intrinsic to the null hypersurface, it is not intrinsic to the sections

of constant 7.

The NP null tetrad constructed in the previous paragraph can be specialised fur-
ther to simplify the associate spin-connection coefficients. By parallelly propagating

{1*, n*, m® m*} along the null geodesics with tangent [* one finds that

k=m=¢€e=0, (4.6a)

p =07, T=a+ [, everywhere on  O. (4.6b)

These equations arise from the application of the commutators of the directional deriva-
tives to the chosen coordinate functions. Moreover, from the condition n®Vyn® = 0 on
Ho it follows that

v=20 on Ha. (4.7)

Also, using that u is an affine parameter of the generators of Hs one finds that v +7 =

0 along these generators. Ome can specialise further by suitably rotating the vectors
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{m®, m"} so as to obtain

v =0, on Hs. (4.8)

4.2.1.1 Solving the NP constraint equations

The NP Ricci and Bianchi identities split into a subset of intrinsic (constraint) equations
to H1 UM and a subset of transverse (evolution) equations. In [47] the gauge introduced
in the previous subsection was used to systematically analyse the constraint equations on
H1UHo with the aim of identifying the freely specifiable data on this pair of intersecting
hypersurfaces under the assumption that it is expansion and shear-free. The results
from this analysis can be conveniently presented in the form of a table — see Table

obtained from [47].

’ Hq ‘ Z ‘ Ho ‘
D¢A =0 ¢t (data) | AC* =0

w=-—rT w=0 w=0 (geometry)
XA =r[r " +7¢4 XA =0 XA=0  (geometry)
U=—?[277+3 (L +Ty)] | U=0 U=0 (geometry)
p= p=0 p:U(87_72Oé7_7\I!2)
c=0 c=0 o=u(dTr—20T1)
Dr=0 T (data) | A7 =0

Da=Dg=0 a,B,r=a+p Aa=AB=0
y=r(ta+78+Us) v=0 =0 (gauge)
w=r¥s uw=20 pn=0

A=0 A=0 A=0

V:%T’z (6\IIQ+T\IJQ> v=_0 v=20 (gauge)
Ty = Wy =0 Uy = L2,

U, = Ty =0 Uy =u (60y —370y)
DU, =0 AT = o,8,0y | AT, =0

Uy = o0, Wy =0 Uy =0

W, =102 (32\112+2a5\1/2) Uy =0 Wy =0

Table 4-A: The full initial data set on H; U Hz (obtained from [47]).

Remark 26. The vacuum field equations and the Bianchi identities written in Newman-

Penrose form imply the following relations for the components of the Weyl curvature
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spinor:

Uy = —-da+df+aa—2aB+ B8 (4.9)

o = 62Uy — (T7+28) 00y + 12720,

Remark 27. As already mentioned, the following discussion will be mostly interested
in the situation where Z is diffeomorphic to a unit 2-sphere, i.e. Z ~ S?. From the
definition of the operators d and 9 as given in , along with those of the NP spin
connection coefficients o and 3, it follows that the connection on Z is encoded in the
combination @ — 3. As discussed in [47], given the freely specifiable data ¢4 and 7 one
can readily compute the NP coefficients «, 5. These, in turn, can be used, together with
the NP Ricci equation , to determine the Weyl spinor component ¥y on Z: from

, it is straightforward to deduce
2Re(Us) =W+ Uy = 6 (a—pB)—d6(a—pB)+2(a—3)(a—73). (4.10)

This implies that the real part of Us — in accordance with the fact that —2Re(W¥3) is the
Gaussian curvature K of Z (see, e.g. Proposition 4.14.21 in [45]) — depends only on the
combination @ — 3, which is completely intrinsic to Z. Analogously, by making use of

(4.9), the spin coefficient 7 and the imaginary part of Ws can be shown to be related via

2iIm(Wy) = Uy — Wy =67 — 67 —2 (BT —B1) . (4.11)

4.3 The Killing spinor data conditions for the characteris-

tic initial problem

In this section, initial data for a set of wave equations will be found on the bifurcated
horizons H1 U Ha, guaranteeing the existence of a Killing spinor in a neighbourhood of

the bifurcation surface Z. Once the wave equation system has been established, the
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required initial data conditions for the zero-quantities will be decomposed in a natural

way to obtain conditions on the components of the Killing spinor candidate k4p.

4.3.1 Killing spinors

As this chapter considers only vacuum spacetimes, the vector £44/ constructed from
a spinor k4p satisfying the Killing spinor equation via the definition is in
fact a Killing vector. Furthermore, using the definitions of the zero quantities H 4 apc
and Spa/ppr given in and respectively, a calculation (performed for the
electrovacuum case in section and simplifying when the electromagnetic terms are

set to zero)) shows the following:

Proposition 5. Let kap be a solution to equation (3.3b)). Then the spinor fields H 4r apc

and Saapp satisfy the system of wave equations

OHaape = 4(Yap" Y Heypgua + Va9 Spoygra), (4.12a)
OSaasp = —Vaax (VPR H por) — Vep (Va9 RH o por)

204579 Sppop + 20 4T Y S apripoy. (4.12b)

Remark 28. As the above equations constitute a system of homogeneous linear wave
equations for the fields H o' a4pc and S4 4/ Bp, it follows that they readily imply conditions
for the existence of a Killing spinor in the development of a given initial value problem for
the vacuum Einstein field equations, when sufficient appropriate initial data is provided.
In Chapter [3] this initial data (for a more general system of wave equations) was found
on a spacelike hypersurface; the calculations performed there can be adapted to the

current setting of a characteristic initial data set — see also [28].
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4.3.2 Construction of the Killing spinor candidate

As with the case of a spacelike initial hypersurface, it will prove useful to investigate the
characteristic initial value problem for the wave equation, governing the evolution
of the Killing spinor candidate kK 45. An approach to the formulation of the characteristic
initial value problem for wave equations on intersecting null hypersurfaces H; and Ho

has been analysed in [48]. This discussion follows the ideas of this analysis closely.

4.3.2.1 Basic set-up

Let {OA, LA} denote a spin dyad normalised according to 04¢* = 1. The spinor k45 can

be written as

KAB = K90A0RB — 2%10(ALB) + KoLalB.

so that

Ko = RABOAOB, K1 = HJABOALB, Ko = RABLALB.

It can be readily verified that the scalars ko, k1 and ko have, respectively, spin weights

—1, 0,1 —i.e. they transform as

) —2(j-1)i9 . .
Kj e Kj

under a rotation {04, 14} {ewoA, e*iﬁLA}.

A direct decomposition of the wave equation ([3.3b]) using the NP formalism readily

yields the following equations for the independent components kg, k1 and ks of the spinor
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RAB:

DAks + ADky — §5k9 — 60kK2

+ (44 7+ 3y = 7)Dra — (p + p)Ara + (T — 3 — B)dka

+(@— 58+ 7)0ka + (Vg + 2a@ — 8aff — 288 — 2vp + 2up

— 29D+ 20 + 21 + 287 + 2Dy — 26a — 263) k2 + (V4 — 4A\p)ko = 0, (4.13a)
DAK; + ADky — 80k1 — 00K

— 217Dk 4+ (u+ 1 — v —7)Dk1 4+ 2vDko — (p + p) Ak

+2p8ko + (a0 — B+ T)6k1 — 2A0ka + 200k + (@ — B+ T)0K1

—2ubkg + (=1 —ap +3Bp+ ac + Bopt — 0T — DT + 0pdo)ka

+ (=U3+a\+ A+ 3apu — Bu —vp — vp+ AT + uT + Dv

— 6\ —Su)ro = 0, (4.13Db)
DAky + ADkgy — §6kg — 60Ko

+ (p+ 71— 5y —7)Dro — (p+ p)Ako + (5o — B+ T)drko

+ (@+ 3B+ 7)0ko + (Vo — 2@ — 8af + 266 + 2yp + 2up + 275

+2Xo — 2a1 — 287 — 2D + 20 + 268) ko + (¥o — 4po)kg = 0. (4.13c)

The above expressions are completely general: no assumption on the spacetime (other

than satisfying the vacuum field equations) or the gauge has been made.

Remark 29. At this stage, there is still considerable freedom in the choice of the spin
dyad {o4,:4}. A natural choice is that of a spin dyad {04, 14} adapted to the NP null
tetrad {I%,n% m®* m*} — if {lAAl,nAA/, mAAI,WAAI} denote the spinorial counterparts

of the null tetrad, one has the correspondences

’ !’ ’ I / ! ! /
JAA — pAGA p AN — AT mAA _ AA AN — A

and the gauge conditions (4.6a))-(4.6b)), (4.7) and (4.8]) hold when computing the corre-

sponding NP spin-connection coefficients by means of derivatives of the spin dyad.
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4.3.2.2 The transport equations on H;

Consider now the restriction of equations (4.13al)-(4.13c|) to the null hypersurface H; with
tangent [®. It follows then that D is a directional derivative along the null generators
of H1, while A is a directional derivative transversal to H;. Using the NP commutator

[D, A] equation to rewrite ADkg, ADk1, ADkg in terms of DAky, DAk and DAkg,
equations (4.13a])-(4.13c) take the form:

2DAkg — 68kg — 60k + (@ + 38)dko + (5o — B)dko + (pu + 1 — 47v) Drkg

+47Dky + 251 DT + (Vg — 20@ — 83 + 288 — 2at — 237

— 2Dy + 20 + 268) kg = 0, (4.14a)
2DAkK1 — 08K1 — 60K1 — 20Dk + (u + 1) Dry + 27Dk + (o — B)0K1

+2ubko + (@ — B)dk1 + (U3 — 3ap + Bu — puT — Dv + du)ko

—2Wsk1 + ko DT =0, (4.14b)
2DAky — 00kg — 060k — AvDky + (47 + p+ 1) Drg — (3o + B)dk2

+4udky + (@ — 58)6ka + (Vg + 20@ — 8a B — 238 + 2a1 + 257

+ 2Dy — 20 — 208) kg + (20 — 2W3 + 2B — 27 — 2Dv + 2011) k1

+ Wyro = 0. (4.14c)

If the value of the components kg, K1, ko are known on H;, then the above equations

can be read as a system of ordinary differential equations for the transversal derivatives

Aﬁo, A/il, Alig,

along the null generators of H;. Initial data for these transport equations is naturally

prescribed on Z.
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4.3.2.3 The transport equations on H-

Similarly, one can consider the restriction of equations — to the null hyper-
surface Hs with tangent n®. Thus, A is a directional derivative along the null generators
of Ha, § and § are intrinsic derivatives while D is transversal to Ho. In this case one uses
the NP commutator [D, A] to rewrite DAkg, DAk, DAk in terms of ADky, ADky,
ADks and lower order terms so that equations — take the form

2ADkg — 06kg — 60kg — (p + p)Akg + 47Dk1 + (5o — B + 27)dko+

(@ + 3B +27)0ko + 400K1 — 4pdky + (Vo — 20@ — 8aff + 26

—2a1 — 287 + 20+ 26B8) ko + (2ap + 2Bp + 6ac — 2P0 — 2pT

+ 207 + 2D71 — 20p — 260 — 2W1)k1 + (Vg — 4po)kg = 0, (4.15a)
2A Dk — 06K1 — 60K1 — (p + P)Aky + 27 DKo + (o — B+ 27) k1

+ (@ — B +27)0k1 — 2pdKa + 200k — 2Waky

+ (¥ —ap—38p—aoc — Bo —pr + 0T + DT — 6p — d0)ka = 0, (4.15Db)
2ADky — 65ke — 06k — (p + P)Akg + (27 — 3a — B)ka + (@ — 58 + 27)5ka

+ (Vg + 20@ — 8aB — 2883 + 2a1 + 267 — 20c — 263) kg = 0. (4.15¢)

If the values of kg, k1, ko are known on Ho then the above equations can be read as a

system of ordinary differential equations for the transversal derivatives

Dl-io, Dlﬂll, DHQ,

along the null generators of Ho. Initial data for these transport equations is naturally

prescribed on Z.
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4.3.2.4 Summary: existence of the Killing spinor candidate

The discussion of the previous subsections combined with Theorem 1 from [48] — see also

[35] — allows the formulation of the following existence result:

Proposition 6. Let (M, g) denote a spacetime satisfying the assumptions of Theorem
111, Then, given a smooth choice of fields ko, kK1 and ke on Hi U Ha, there exists a

neighbourhood O of Z in D(Hi U Ha) on which the wave equation (3.3b) has a unique

solution Kap.

Proof. Once a basis {04, 14} has been chosen on H1 UHs, the spinor x4 is determined
by the values of kg, k1, k. Furthermore, the equation for k45 (3.3b)) is a quasilinear wave
equation of the form needed for Theorem 1 of [48]. By the statement of that theorem,

the result follows. O

Remark 30. The assumption of smoothness of the fields g, k1 and ko requires, in
particular, that the limits of these fields as one approaches to Z on either H; or Hso

coincide.

4.3.3 The NP decomposition of the Killing spinor data conditions

The conditions on the initial data for the Killing spinor candidate k4p constructed in

the previous section which ensure that it is, in fact, a Killing spinor follow from requiring

that the propagation system (|4.12a))-(4.12b)) of Proposition |5 has as a unique solution —

the trivial (zero) one.

The purpose of this section is to analyse the characteristic initial value problem for

the Killing spinor equation propagation system (4.12a))-(4.12b)).
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4.3.3.1 Basic observations

We are interested in solutions to the system (4.12a))-(4.12b)) ensuring the existence of a
Killing spinor on D(#H; UH3). The homogeneity of these equations on the fields Ha/apco

and Sa4/pp allows to formulate the following result:

Lemma 19. Let (M,g) denote a spacetime satisfying the assumptions of Theorem .

Further, assume that

Huprpape =0, Saaep =0 on HiUHs.

Then there exists a neighbourhood O of Z in D(Hi U Hz) on which the Haapc and

SAA’BB’ vanish.

Proof. The result follows from using the methods of Section on the equations

(4.12a)-(4.12b]), and the uniqueness of the solutions to the characteristic initial value

problem. O

From the above lemma and the observations in Section [£.3.1] one directly obtains the

following result concerning the existence of Killing spinors on D(H; U Ha):

Proposition 7. Let (M,g) denote a spacetime satisfying the assumptions of Theorem
[11 Assume that initial data ko, k1, k2 on Hi U Hs for the wave equation (3.3b) can be

found such that
Hprpape =0, Saapp =0 on HiUHs.

Then the resulting Killing spinor candidate kop 1, in fact, a Killing spinor in a neigh-

bourhood O of Z on D(H1 U Ha).

Remark 31. A straightforward computation shows that the condition

Hyapc =0
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is equivalent to the equations
Drky — 2eko + 2kk1 = 0, (4.16a)
Okg — 2Bkg + 20k1 =0, (4.16b)
Oko + 2Dk — 2Tk — 20k + 2K1p + 2KkKg = 0, (4.16¢)
Akg 4+ 20Kk1 + 20K — 2ukg + 27K — 277Kg = 0, (4.16d)
Dk + 20K1 + 2pra — 2X\ko — 2Tk + 2€kg = 0, (4.16¢)
0ko + 2AK1 + 27Ko + 28K — 2uk1 — 2vkKg = 0, (4.16f)
ko + 20ko — 20k, = 0, (4.16g)
Akg 4 2vko — 2vk1 = 0. (4.16h)
Remark 32. Defining the basis coefficients of the Killing vector €44/ by
Eanr = 1170404 + E10004Ta7 + o1rta0ar + Eoortatar,
equation (2.5)) takes the form
117 = ARy — 0kg — 2BKa + Tho + 2ukKk1 — VKo, (4.17a)
&1 = Dkg — 6k + 2k — pro — 2TK1 + Ao, (4.17b)
o1 = 0k1 — Ak + 27k — kg — 27K1 + Ok, (4.17¢)
Eoor = 0ko — Dk1 — 2akg + Tko + 2pK1 — Kka. (4.17d)

If €44/ is required to be Hermitian so that it corresponds to the spinorial counterpart of

a real vector £ then one has the reality conditions

Soor = §uros &1 = &1y So1’ = 1705 §10 = ot

A further calculation shows that the equation S44/gppr = 0 takes, in NP notation, the
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form:

D&y — Soore — &oo€ — &1k — Eorrk = 0, (4.18a)
A& + &y + &y + v + Siov = 0, (4.18Db)
D&y + Adoo — ooy — Soor Y + &11v€ + E117€ + o

+ &oT™ — ST — &orrT =0, (4.18¢)

6611 — Aoy + aéqr + E11 B + Eovry — Eorry + 1o A

+ &orr i — ooV + §11v7 =0, (4.18d)
0017 + Eorr@ — Eour B+ Eopr A — E1170 = 0, (4.18e)
080 — D&o1r — Eoor @ — &oo B + So1€ — Eo17€ + &117K

— oo™ — &op — &100 = 0, (4.18f)

0611 — A&y + Erva+ &1/ B — L1y + 107 + Eorr A
+ &om — Soov + &7 = 0, (4.18g)
010 + Errer — E10 B + Eoo X — €117 = 0, (4.18h)

6100 + 6&01 — Eovrar — E10 @ + &1 B+ Eo1r B + Eoor

+ oot — &11p — &11p = 0, (4.181)
0&o0 — Déry — Sova — &oor B — 1€ + &10€ + &R
— Soom — &op — Sorro = 0. (4.18;)

The equations (4.16a))-(4.16h)) and (4.18al)-(4.18])) are valid at any point in the space-

time. When restricting to the bifurcated horizons, these equations are expected to sim-
plify as a result of the gauge conditions and other specific choices made during the set-up
of the characteristic problem - see Table [4-A] Restrictions to the bifurcation surface Z
and ingoing and outgoing null hypersurfaces 1 and Ho will be done successively in the

next few sections.
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4.3.3.2 The condition Hy apc =0 on Z =H1NHy

On Z = H;1 N Hs equations (4.16al)-(4.16h) reduce to:

Drg = 0, (4.19a)
Akg =0, (4.19Db)
O0kg — 28kg = 0, (4.19¢)
ARy + 26Kk1 + 27K = 0, (4.19d)
2AK1 + 0Kk + 20Bke + 27Ky = 0, (4.19e)
2Dk1 + dkg — 2k = 0, (4.19f)
Dk + 26k1 = 0, (4.19¢)
Ok + 2aky = 0. (4.19h)

In what follows, regard equations (4.19¢)) and (4.19h)) as intrinsic to Z. Making use of
the operators 0 and 0 (see (4.2)) for their explicit form) these conditions can be concisely

rewritten as

OKko = TKo, (4.20a)

OKko = —TKao. (4.20b)

Remark 33. Equations (4.19a})-(4.19h)) do not constrain the value of the coefficient

k1 on Z. Instead, given an arbitrary (smooth) choice of k1 and coefficients k¢ and ko

satisfying the equations in (4.20al)-(4.20b)), equations (4.19b)), (4.19d)) and (4.19¢) are

regarded as prescribing the initial values of the derivatives Akxg, Ak, and Aky that

need to be provided for the transport equations (4.14a)-(4.14c) along #;. Similarly,
equations (4.19af), (4.19f) and (4.19g) can be used to prescribe the initial values of the

derivatives Dkgy, D1 and Dko which are used, in turn, to solve the transport equations

(4.15a)-(4.15¢) along Hs.
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4.3.3.3 The condition H 4 4pc =0 on H;

On H; equations (4.16a))-(4.16h)) reduce to:

Drig = 0, (4.21a)
Ako — 2UK1 + 27K = 0, (4.21b)
dkg — 2Bkg = 0, (4.21c)
Akg 4 20k1 — 2(y + 1)Ko + 2761 = 0, (4.21d)
2AR1 + dko + 2(B + T)ka — 2uKk1 — 2vKg = 0, (4.21e)
2Dk1 + dkg — 2k = 0, (4.21f)
Dkg + 25k1 = 0, (4.21g)
Ok + 2aky = 0. (4.21h)

Equations (4.21al), (4.211) and (4.21g) are interpreted as propagation equations along

the null generators of H; which are used to propagate the initial values of kg, k1 and

ko at Z. In order to understand the role equations (4.21c) and (4.21h)), consider the

expressions

D(dko — 2Bkyo), D(6ka + 2auk3).

A direct computation using the NP commutators shows that

D((S/@() - 2ﬁ/€0) = —2H0Dﬁ

D(6ko + 2aka) = 2k Do — 2(av — B)6ky — 232/-;1.

Evaluating the Ricci identities on H; one finds that Da = D = 0 — see also Table [I-A]

Thus, it follows that

D(6ko — 2PkKo) =0

D(6kg + 2aks) = —252/£1.
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Accordingly, equation (4.21c]) holds along H; if it is satisfied on Z — this is equivalent
to requiring condition (4.20a)) on Z. Observe, however, that in order to obtain the same
conclusion for equation (4.21h|) one needs 52@ =0on H;.

It remains to consider equations (4.21b)), (4.21d]) and (4.21¢|). These prescribe the

value of the transversal derivatives Akg, Ax; and Axs. Recall, however, that from
the discussion of Section these derivatives satisfy transport equations along the

generators of H;. Thus, some compatibility conditions will arise. Substituting the value

of Akyg, given by equation (4.21d)) into the transport equation (4.14al), and then using
the NP commutators, NP Ricci identities and equations (4.21al), (4.21f) and (4.21g) to

simplify one obtains the condition

\I/QKO = 0.
Similarly, substituting the value of Ak; given by equation (4.21€)) into the transport
equation (4.14bf) and proceeding in similar manner one finds the further condition

W3kg = 0.

Finally, the substitution of the value of Aks as given by equation (4.21b)) eventually
leads to the condition

Wyro + 2W3k1 — 3Waoko = 0.

One can summarise the discussion of this subsection as follows:

Lemma 20. Assume that equations (4.21af), (4.21f) and (4.21g) hold along Hi with

initial data for ko and ke on Z satisfying equations (4.20al) and (4.20b)), respectively,

and that, in addition,

=2

@)

k1 =0, Wokg=0, W3kg=0, Uyurg+2V3zk; —3Vsko =0, on H;.



Chapter 4. Killing spinor data on non-expanding horizons 142

Then, one has that

Huyapc=0 on Hi.

4.3.3.4 The condition HA’ABC =0 on 7'[2

On Hs equations (4.16a))-(4.16h) reduce to:

Dk =0, (4.22a)
Ak =0, (4.22b)
dko — 2Bko + 20k = 0, (4.22¢)
Arg + 20Kk1 + 27K + 20Kk9 = 0, (4.22d)
2AK1 + 0k +2(B + T)k2 =0, (4.22e)
2Dk + Sk — 20k + 2pK1 = 0, (4.22f)
Dk + 20K1 + 2pka = 0, (4.22g)
Okg + 2akg = 0. (4.22h)

In analogy with the analysis on Ho, in what follows we regard equations (4.22bl), (4.22d))
and (4.22¢]) as propagation equations for the components kg, k1 and k9 along the gener-

ators of Hs. Initial data for these equations is naturally prescribed on Z.
Now, regarding equation (4.22h)), a direct computation shows that
A(0ka + 2akz) = 0.

Thus, if equation (4.22h]) is satisfied on Z then it holds along the generators of Ho — this

equivalent to requiring (4.20bf). A similar computation with equation (4.22c)) yields the

more complicated relation

A(dkg — 2BkKo + 20K1) = —20%K1 — 2k900 — 300K — 200 Ko,
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Observe that if ko = 0 along Ho, then the obstruction to the propagation of equation
([£.22d)) reduces to the simple condition d?x; = 0 which is somehow complementary to

the condition 52/4,1 =0 on H;.

It remains to analyse the compatibility of equations (4.22a)), (4.22f) and (4.22g]) with
the transport equations (4.15al)-(4.15c). Substituting Dk1, Akg, Dko and dkg given by
equations (4.22a)), (4.22d)), (4.22f) and (4.22¢)) into equation (4.15a) one obtains after

some manipulations the condition

Wokg + 2W1k1 — 3Wskg = 0.

Similarly, after substituting Dk1, Axy and Dkg given by equations (4.22f), (4.22¢]) and
(4.22¢g)) into equation (4.15b)) one obtains the condition

Uike = 0.

Finally, by substituting Dxs, Akg and ko given by (#.22g)), (#.22b]) and ([4.22h)) into

equation (4.15¢)), one obtains the condition

\I’QK,Q =0.

One can summarise the discussion of this subsection as follows:

Lemma 21. Assume that equations (4.22b), (4.22d) and (4.22¢]) hold along Ho with

initial data for ko and ko on Z satisfying conditions (4.20al) and (4.20b)), respectively,

and that, in addition,

3
%K1 + Kodo + 505/4;2 +aoke =0, Woky =0, Wike =0,

Woko + 2W1k1 — 3Wokg =0, on Ho.
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Then, one has that

Huyapc=0 on Ho.

Remark 34. One can show that the curvature conditions in Lemmas R0 and 21] are in

fact components of the equation
F
Viapc” kpyr = 0.

The other components of this equation are trivially satisfied. As this is a basis inde-
pendent expression, the curvature conditions are satisfied in all spin bases, not just the
parallely propagated one. One can check this by considering Lorentz transformations
and null rotations about [ and n®, and showing that these conditions are preserved.
The equation above can be shown to be an integrability condition for the Killing spinor

equation, so it is unsurprising to find components of it arising naturally from the analysis.

4.3.3.5 The condition Sy g =0 at Z

Using the properties of Z, as given explicitly in Table [d-A] together with the conditions

(4.19a)-(4.19h)) implied by the equation Haapc = 0 on Z, equations (4.17al)-(4.17d)

reads as

S = —2(5@ + TkK2), (4.23a)
&1 = —30k1 (4.23b)
€01 = 30k1, (4.23c)
ooy = §(5/% —Tko), (4.23d)
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while on Z equations (4.18a))-(4.18j|) reduce to

D& = 0, (4.24a)
A& =0, (4.24b)
Déy + Aoy — T30 — TG = 0, (4.24¢)
Ao — 6611 — 27611 = 0, (4.24d)
6&o1r + (@ = B)&orr =0, (4.24¢)
Dé&orr — 0&o0r + 700y = 0, (4.24f)
A&y — 6611 — 27611 = 0, (4.24g)
0610 + (a = B)&o = 0, (4.24h)
0100 + 0601 — (@ — B)é1y — (v — B)éor = 0, (4.24i)
Déy — 6éoor + 7o = 0. (4.24j)

Equations (4.24¢€)), (4.24h) and (4.24i]) can be read as intrinsic equations for £y and &p¢r.

Expressing these in terms of the & and 0 operators, observing that the spin-weights of

&o1r and &y are respectively —1 and 1, one has that

Do = 0, (4.25a)
31y =0, (4.25b)
&1 + 01 = 0. (4.25¢)

Substituting conditions (4.23b))-(4.23c) into conditions (4.25a])-(4.25b|) above yield the

simple conditions

62#&1 = 0, 32,%1 =0.

Remark 35. The above expressions indicate that the component x; has a very spe-
cific multipolar structure. Note, however, that the d and 0 above are not the ones

corresponding to S? but of a 2-manifold diffeomorphic to it.
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Remark 36. Equations — are just the components of the 2-dimensional
Killing vector equation on the bifurcation surface Z. In Section 5.2 of [39], it is shown
that if Z is diffeomorphic to S? then such a Killing vector must correspond geometrically
to an axial rotation, and so the surface Z possesses an axial isometry. This fact will be
useful later when trying to find an explicit expression for the Killing spinor component

k1 on Z.

Crucially, one can also show that equations (4.24al)-(4.24d]), (4.24f)-(4.24g) and (4.24j)

are implied by equations (4.19a)-(4.19h)), the Ricci equations, and the conditions of

Lemmas 2 and 3 (which must be satisfied on Z = H; N H3). Summarising:

Lemma 22. Assume that equations (4.19al)-(4.19h)) hold on Z and that, in addition,

=2

%K1 = 0, 0k =0, on 2Z.

Then one has that

Saageg =0 on Z.



Chapter 4. Killing spinor data on non-expanding horizons 147

4.3.3.6 The Killing vector equation on H;

On H;, equations (4.18a))-(4.18])) reduce to:
Dé&oor = 0, (4.26a)
A&y + (v + )61 + véorr + €1 = 0, (4.26Db)
Dé&11 + Aoy — 7€ — 7o — (v +F)oor = 0, (4.26¢)
Ao — 6611 — (v =7 + p)éorr + Voo — 276117 = 0, (4.26d)
6&o1r + (@@ — B)éor = 0, (4.26¢)
Dé&op1r — 6800 + 700 = 0, (4.26f)
Aby — 06611 — (V — v + I)érr + véoo — 27611 = 0, (4.26g)
0610 + (a = B)éio = 0, (4.26h)
610 + 001 + (1 + ) éoor — (@ — B)éry — (o — B)&or = 0, (4.261)
D&y — 0oy + oo = 0. (4.26j)

Substituting the components &y, &o1/, {100 and €177, as given by (4.17al)-(4.17d)), into

these relations (being careful not to discard the A derivatives of quantities which vanish

on Hi), and using equations (4.21a))-(4.21h)) and the Ricci equations, one finds that

(4.26a))-(4.26;)) reduce to:

0%k1 = ko(du 4 pr),

82%&1 = 0,
\PQﬁO = 07
\Ilgli(] = 0,

Wyko + 2W3k1 — 3Wako = 0.

(4.27a)
(4.27D)
(4.27¢)
(4.27d)

(4.27e)

Remark 37. The conditions (4.27b))-(4.27¢€)) are exactly the conditions of Lemma 2. The

additional condition (4.27al) must be satisfied on all of ;. Note, however, that after
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some manipulations the condition
D (82/€1 — no(é,u + ,U,T)) = —2(5(\112,‘%0) +4P8¥okg =0

can be shown to hold, where in the last step (4.27c) was used. Accordingly, it suffices
to guarantee (4.27al) on Z as then it is satisfied on the whole of H; if condition (4.27¢))
holds on #;. Furthermore, on Z the spin coefficient p vanishes, so (4.27a)) reduces to

9%k1 = 0 on Z. Note that this is one of the conditions appearing in Lemma

This can be summarised in the following lemma:

Lemma 23. Assume that equations (4.21al)-(4.21h) hold on H1, and the conditions of
Lemmas [20 and [23 are satisfied. Then one has that

SAA/BBIZO on 7‘[1.

4.3.3.7 The Killing vector equation on H,

On Hs, equations (4.18al))-(4.18])) reduce to:

D&y =0, (4.28a)
A& =0, (4.28b)
D&y + Aoy — 7100 — o1 = 0, (4.28¢)
Ao — 0611 — 278110 = 0, (4.28d)
6601 + (@ — B)éor — o1 = 0, (4.28¢)
Dé&o1r — 6800 + Té00r + €100 + péorr = 0, (4.28f)
Ay — 068117 — 27611 = 0, (4.28g)
0610 + (o = )1y — a1 =0, (4.28h)
810 + 001 — (@ = B)éror — (o = B)éor — 2p&1rr = 0, (4.281)

D&y — 6&o0 + Téor + 7017 + pE1o = 0. (4.28j)
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Substituting the components o, &g17, 100 and €171/, as given by (4.17a))-(4.17d)), into

these relations (being careful not to discard the D derivatives of quantities which vanish
on Hsg), and using equations (4.22a))-(4.22h)) and the Ricci equations, one finds that
(4.28a))-(4.28;)) reduce to:

0%K1 + Kodo + 305/@ +aoky =0, (4.29a)
52%&1 + Kodo — %E(S/ﬂg — 30k — Uik = 0, (4.29b)
Uike =0, (4.29c¢)
Wyky =0, (4.29d)
Wy + 201Ky — 3Usko = 0. (4.29¢)

The conditions (4.29a]) and (4.29¢))-(4.29¢|) are exactly the conditions of Lemma 3.

The additional condition (4.29b)) must be satisfied on all of Hy. This can be summarised

in the following lemma:

Lemma 24. Assume that equations (4.22a))-(4.22h)) hold on Ha, the conditions of Lemma

[21) are satisfied, and that in addition,
_92 _ 1 -
0 K1 + Kodo — 50652 — 3tk —V1ko =0 on Ho.

Then one has that

Saapp =0 on Hs.

4.4 Solving some of the constraints on Z

Now that some necessary conditions for the vanishing of the zero quantities H 4 apc and
Saagp’ on the bifurcated horizon have been found, one can ask whether it is possible

to deduce anything about the spinor k45 from them.
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4.4.1 Determining x, on Z

Consider now the restrictions to xo on Z. To satisfy the condition ¥oke = 0 on Ho,
applied in Lemma 3, Woky must necessarily vanish on Z C Hy. Consistent with this

condition the following sub-cases can be seen to arise:

1. Assume first that ko is nowhere vanishing on Z. In this case Y5 must vanish
throughout Z. Note also that in virtue of Table all the other Weyl spinor components
vanish on Z, and thereby

Vapeplz =0.

As shown in Table W, and ¥y vanish on Hi, and ¥3 and ¥, vanish on Hs, respec-

tively. Further, observe that the Bianchi identities imply the following relations on Hi:

DV, =0,
DWy = 5U,,

D\I/4 = 20&‘1’3 + 3\113

As Wy vanishes on Z and D is the directional derivative along the geodesics generating
H1, the first of these equations imply that ¥o = 0 on H;. By the same argument,
because the right hand side of the second of the above relations has shown to vanish on
H1, it follows that U3 = 0 on H;. In turn, this also implies that ¥4, = 0 on H; as a
consequence of the last relation. Therefore, along with the vanishing of Wy and ¥y on

‘H1 all the Weyl spinor components vanish there — that is one has

Vapeplu, =0.
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Similarly, the Bianchi identities imply the following relations on Ha:

AUy =6V — (47‘ + 25)‘1’1 + 30Ws,
A\Pl = 5\:[/2 - 37'\1/2,

AUy = 0.

As W, vanishes on Z, and A is the directional derivative along the geodesics generating
Hso, the third of these equations imply that W5 = 0 on Hy. Thus, the right hand side of
the second of the above relations vanishes on Hs, and by the same argument it follows
that W1 = 0 on Ho. The first relation then implies that g = 0 on Ho. Therefore, along
with the vanishing of W3 and ¥4 on Hy all the Weyl spinor components vanish there.

Thus, one has that

Vapcep|u, =0.

Summarising, the non-vanishing of ko on Z implies that all the Weyl spinor components
vanish identically on the union of Z, H; and Hs. This, in the vacuum case, implies
that all components of the Riemann curvature tensor vanish on Hq U Ho. It follows
then that the neighbourhood O in D(H; U H3) spacetime obtained from Theorem
is diffeomorphic to a portion of the Minkowski spacetime and the pair intersecting null
hypersurfaces has to contains a bifurcate Killing horizon corresponding to a choice of a

boost Killing vector field.

it. k9 vanishes somewhere on Z: It follows from the discussion in the previous
subsection that, unless the spacetime is Minkowski, ko must vanish somewhere on Z. It
turns out that that if this is the case, then ko must vanish on some open subset of Z.
To see this assume, on contrary, that xo vanishes only at isolated points. Choose one
of them, say z € Z with ko(z) = 0 and a Cauchy sequence {z,} converging to z in the
metric topology of Z ~ S2. Since ks is assumed to vanish only at isolated points to ensure
Uyke = 0 on Z, the sequence {Wa(z,)} must be the identically zero sequence in R which

by continuity implies that Wy(z) = 0. Applying this argument to any of the isolated
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points where ko vanishes gives that Ws must be identically zero on Z. As we saw before,
this would imply that the spacetime is Minkowski — in conflict with our assumption that
the geometry is not flat. This, in turn, verifies that whenever k9 vanishes somewhere on

Z it has to vanish on some (non-empty) open subset of Z.

1ii. Ko vanishes on a (non-empty) open subset of Z. It follows from (4.5) that
(4.20b)), which is valid on Z, can be written:

PP 10:(Pry) = -7 P! (Pry) (4.30)

implying, in turn, that ko has to be of the form

1 —
Ky = o+ OXp |:—/TP 1d7—|—g0(z) ,
where ¢(z) is an arbitrary holomorphic function. This, however, in virtue of the non-
vanishing of P, implies that ko cannot vanish on an open subset of Z unless it is identi-
cally zero on Z, i.e.

Kalz =0

as intended. Note also that the condition (4.22h]) requires that ko must vanish along the

generators of Ha, and so we must also have

IQQ‘;LLQ =0.

Summarising, the discussion in this section has shown the following:

Lemma 25. Assume that

Uy ko =0 on Z.

Then, if ko is nowhere vanishing on Z, then the solution to the characteristic initial value
problem must be diffeomorphic to the Minkowski spacetime in the domain of dependence

of D(H1UHz). Otherwise, ke = 0 holds on the whole of Z, and then it is also identically
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zero on Hs.

4.4.2 Determining ko on Z

The analysis of the previous section can be adapted to the component kg by noting
that the vanishing of Woky on H1, one of the conditions in Lemma can be deduced
from the vanishing of Wokg on Z. Indeed, it can be shown that unless the spacetime

is Minkowski, k¢ must vanish on a non-empty subset of Z. The only difference in the

analysis lies on the analogue of equation (4.30). It follows from (4.5]) that (4.20a)), which

is valid on Z, can be written as
PP 10, (Pro) =P ' (Pro)

which implies, in turn, that ¢ has to be of the form

1

Ky = — -
0P

exp [/ TP ldz44(2) |,

where ¢(Z) is an arbitrary antiholomorphic function on Z. From here, by an argument

analogous to that used for ko one concludes that
kolz =0
and, moreover, as a consequence of equation (4.21al), that

HO"Hl =0.

Summarising;:

Lemma 26. Assume that

Yo kg =0 on Z.

If ko is nowhere vanishing on Z, then the solution to the characteristic initial value
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problem must be diffeomorphic to the Minkowski spacetime in the domain of dependence
of D(H1 U Hz). Otherwise, ko = 0 holds on the whole of Z, and it is also identically

zero on Hi.

4.4.3 Eliminating redundant conditions on H; and H,

The first condition in Lemma B0 was

=2
0 K1 = 0 on 7‘[1.
In theory, one would have to solve this constraint on the whole of ;. However, one can

show that on H;

D(E%%) = — %WHO + g?mo + 5o <—a2 4B -F 4 gsa + ;(m)

+ Ko (2043? — 208 — 3P0 — B + %a) .

Note that as ko vanishes on #H; (under the assumption that the spacetime is not dif-
feomorphic to Minkowski), the right hand side of this equation also vanishes on H;.
Therefore, if k1 satisfies 52141 = 0 on Z, then it also satisfies the same condition on
the whole of H;. This was a condition on Z already present from the requirement that

Saapp|z = 0. Summarising:

Lemma 27. If koly, =0 and 52/<;1|g = 0, then the condition 52f£1|%1 =0 from Lemma

is automatically satisfied.

A similar procedure can be performed on Hy. The first condition from Lemma
was

3
%K1 + Kodo + 5051@2 + aoky =0

which must be satisfied on #Hs. It has already been shown that necessarily raly, =

0 if the spacetime is not diffeomorphic to the Minkowski spacetime. Therefore, the
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aforementioned condition reduces to
0?k1 =0 on Ho.
Now, one can show that on Ho,

1
A (0%k1) = — 5000k - 2755@ + ko (0% — @f + 2% — 26@ — 463)

+ kg (—ada + Béa — 2adf + 2868 — dda — 26613) .

The requirement that ks vanishes on Ho means that the right hand side of this equation
also vanishes on Hs. Therefore, if k1 satisfies 3251 = 0 on Z, then it also satisfies the
same condition on the whole of Hs. This was a condition on Z already present from the

requirement that Saapp/|z = 0.

Finally, the condition from Lemma [24] says that

_ 1 _
0 K1 + Kkodo — 555/{2 —3akoo — Wike =0 on Hso

which reduces to 32/@1 = 0 due to the fact that ka|y, = 0 when the spacetime is not

diffeomorphic to the Minkowski solution. One can show that on Ho

A (3) = oy (;57 - m) + i (~608 — 6038 — 206 + @a

+5B0a + 2ad0a + Boa + TadB + 2863 + 6da — §6a — 2%6)

The requirement that ko vanishes on Ho means that the right hand side of this equation
also vanishes on Hs. So if kq satisfies 52@ = 0 on Z, then it also satisfies the same
condition on the whole of Ho. This was a condition already present from the requirement

that Saapp’|z = 0. Summarising, we have
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Lemma 28. If ka|y, =0 and 32,%1]5 = 0%k1|z = 0, then the conditions

_ -1 —
(82%1 + Kodo — 555@ — 3akoo — ‘P1/€2) |4, =0,

3
<52/£1 + Kkodo + 505%2 + ozcmg) |4, =0,
applied in Lemmas[21] and [2]], are automatically satisfied.

The only remaining condition on H; to be considered is from Lemma which
reduces to

(2\1131{1 - 3‘1’2&2) ‘Hl =0 (431)

due to the requirement that rgly, = 0. One can also use this requirement to show that
D? (2U3rk;1 — 3Wska) |3, = 0.

More precisely, the right hand side of this expression can be shown to be homogeneous
in kg and derivatives of kg intrinsic to H;. This can be thought of as a second order
ordinary differential equation along the geodesic generators of #;. Therefore, equation
is equivalent to the vanishing of (2U3k; — 3Wak2) and its first D-derivative on Z.
This combination vanishes on Z if ka|y, = 0 as it follows from Table that U3z = 0.

The vanishing of the first derivative on Z can be shown to be equivalent to
8 (H?\IIQ) |Z =0. (4.32)

In a similar way, the only remaining condition on Hs to be analysed is from Lemma
This condition reduces to

(2\111/-61 — 3\1’2&0) |’H2 =0 (4.33)

due to the requirement that k2|, = 0. One can also use this requirement to show that

Az (2\111/{,1 — 3\I/2H0) ’7.[2 = 0.
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This time, the right hand side of this can be shown to be homogeneous in ks and
derivatives of kg intrinsic to Hs. This can be thought of as a second order ordinary
differential equation along the geodesic generators of Hsy. Therefore, equation (4.33) is
equivalent to the vanishing of (2¥;r; — 3Wakp) and its first A derivative on Z. This
combination vanishes on Z if kg|y, = 0 as, following Table one has that U]z = 0.

The vanishing of the first derivative on Z can be shown to be equivalent to
5 (k}02) |z = 0. (4.34)
Defining the combination in the brackets by

M = KWy (4.35)

it follows from equations (4.32)) and (4.34) that 9t € C is constant on Z.

We can summarise the discussion of this section in the following;:

Lemma 29. Assume that ko|y, = k2|n, = 0. Then M = k3Vs is constant on Z if and

only if

(2\:[/3%1 — 3\112/432) ‘Hl = O,

(2\I/1H1 — 3\112/10) "H2 = 0.
Remark 38. Note that

3 _
quq.[l = 5\1’2143% (—5%0 + 20&%30) ‘7—[1

=0

where equation DWs|y, = 0 from Table equation (4.21f) and the requirement that
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ko|#, = 0 have been used. Similarly,

3
AM|3, = 5‘1’2%3% (=0ka = 2(B + T)kK2) |

=0

where equation AWs|y, = 0 from Table equation and the requirement that
k2|1, = 0 have been used. Thus, 9 is constant not merely on Z but on the whole of
H1 U Hso. Since the Newman-Penrose reduced system coupled to the wave equation for
KAB, equation , is a well-posed hyperbolic system we also have that 9 is, in fact,

constant throughout the domain of dependence of Hi U Hs.

4.4.4 Summary

Collecting all the previous lemmas and propositions together one obtains the following:

Theorem 12. Assume that the spacetime — obtained from the characteristic initial value
problem in a neighbourhood O of Z in D(H1UHz2) — is not diffeomorphic to the Minkowski

spacetime. Then the following two statements are equivalent:

(1) Given a spin basis {OA, LA} on Z, there ewists a constant 9 € C such that
ko=0, 0’k =0°61=0, Kke=0 and /@i{’\Ifngm on Z.

(i) Hupyapc =0, Saapp =0 everywhere on Hi U Ho.

Recall that the vanishing of the spinors H 4 apc and Sa4-pp on H1UHs are precisely
the conditions of Proposition [7, which along with the assumptions of Theorem [I1] imply
that the Killing spinor candidate k4p is in fact a Killing spinor in the causal future (or

past) of Z. Summarising these observations gives:

Theorem 13. Let (M, g) be a vacuum spacetime satisfying the conditions of Theorem

. Given a spin basis {OA, LA} on Z, assume that there exists a constant M € C such
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that the following relations
ko=0, 0’k =0%k1=0, ko=0 and k}Uy=M (4.36a)

hold on Z. Then there exists a neighbourhood O of Z, in D(H1 U Ha), such that the
corresponding unique solution kap to equation (3.3b)) is a Killing spinor on O N D(H, U

).

Proof. First, note that H 4 4pc and Sg4/pp vanish on Hi U Ho as a result of Theorem

Data for kg, k1, k2 on Hy and Ho are determined by their values on Z by (4.21a)),

(@.21f), (4.21g), (4.22D), (4.22d) and (4.22€)), so Proposition [f] says that there exists a

unique solution to (3.3b) on O N D(H1 U Hsy). Proposition [7| then says that this field

kap satisfies Hy apc = 0 on O N D(H; UHz), so is in fact a Killing spinor there. O

Remark 39. Condition (4.36al) is a strong restriction on the form of the Weyl spinor
component Ws. As already discussed in Remark [27] the Weyl spinor component ¥, is
not a basic piece of initial data. In view of (4.11]) condition (4.36a)), ultimately leads to

restrictions on 7 and ¢A.

4.5 Enforcing the Hermiticity of the Killing vector

In Proposition the assumption that the spinor €44/ constructed from the Killing
spinor kap is Hermitian is needed in order to show that the spacetime is isometric to
the Kerr solution. Recall that, using equations —, the components of £4 4/
can be expressed in terms of derivatives of the Killing spinor components xg, k1 and ks.
Accordingly, the Hermiticity condition leads to further restrictions on the components
Ko, k1 and ko. A consequence of the following proposition is that it suffices to impose

restrictions only on the hypersurfaces H; and Hs.

Proposition 8. Let kap be a solution to equation (3.3b)). Then the spinor field Eaas
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satisfies the wave equation

Oéan = —V4PPHupep
Proof. Follows by commuting derivatives, and using (3.3b)). O

An immediate consequence of this result is that
O (éan —Eap) = VPP Huporp — VaP“PHupep.

Assuming that the conditions of Lemmas [20] and [21] are satisfied, H 4/ 4p¢c vanishes in a
neighbourhood O of Z in D(H; U Hz). Therefore, if the quantity 44/ — £ 44 vanishes
on H1 UHa, there exists a neighbourhood O' C O of Z in D(H1 UHz) where 441 —E 4 u0

vanishes, and thereby the vector £4 4/ is Hermitian there.

4.5.1 Some immediate restrictions

The Hermiticity of the Killing vector £ 44/ is equivalent to the relations

Soor = &0 Cor =Eros a0 =Eorvs & =Equr (4.37)
These conditions will be imposed on H; and Hg separately.

Conditions on #H;. On H;, using the explicit expressions (4.17al)-(4.17d)), the first
condition in (4.37)) is trivially satisfied, and the remaining conditions can be shown to

be equivalent to

(5(%1 —i—ﬁl) =0, (4.38&)

(5(/-%1 —i—ﬁl) =0, (4.38b)

Ak + Thy real, (4.38¢)
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on Hi. In fact, it is straightforward to show that on H;
Dé(k1 +®1) = Do(k1 +F1) = 0.

Thus, it suffices to impose conditions (4.38al)-(4.38b)) only on Z. In other words, the

Hermiticity condition on H; is equivalent to

Re(k1) constant on Z,

Ak1+Tkry Teal on H;.

Conditions on Hs. Secondly, on Ha, the last condition in (4.37)) is trivially satisfied

and the remaining conditions are equivalent to

5(%1 + El) =0, (4.39&)
(k1 +F1) =0, (4.39b)
Dky  real, (4.39c¢)

on Ho. Again, it is straightforward to show that on Ho

A(S(Hl —|—El) = Ad(/ﬂ —}—El) =0.

Consequently, it suffices to impose conditions (4.39al)-(4.39b)) on Z.

Combining the discussion of the previous two paragraphs one concludes that the

spinor field €44/ is Hermitian on H; U Hs if and only if the following conditions hold:

K1+ K1 = const on Z, (4.40a)
Ar1+ 7Kg real on Hi, (4.40b)

Dk real on Ha. (4.40c¢)
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4.5.2 Hermiticity in terms of conditions at Z

In this section it is shown that conditions (4.40b))-(4.40c|) can be replaced by restrictions
on Z.

Analysis on Hsy. Start by considering condition (4.40c|). From the transport equation
(4.15b)) on Ha, and equation (4.19g]), it follows that

2ADk1 = 08K1 + 00k + 410k, — (3a + B)dk1 — (3a + B)0k1 + 2Waky
on Hy. Taking a further A-derivative gives
2AADk1 = A(66 + 60)k1 + 47A8K1 — (3o + B)Abk1 — (3a + B)Adky + 2UsAk;.
We can commute the A-derivative with the § and § derivatives to obtain
2AADK; = (86 + 86)Aky + 4700k — (3 + B)dAK1 — (3a + B)dAKT + 2V Ak,

Note that all the terms on the right are proportional to intrinsic derivatives of Akq,
which by (4.22¢]) is proportional to k2 and its intrinsic derivatives on Hgz. As shown in
subsection unless our spacetime is the Minkowski solution, the component ko must

vanish on Hs. It follows then that

AADk1 =0 on Hs.

This is a second order ordinary differential equation along the generators of Ho. There-
fore, the requirement that Dk is real on Hs is equivalent to requiring that Dkq and

ADk are real on Z.

Analysis on H;. An analogous argument applies in the case of condition (4.40b]). Take

first a D-derivative along the generators of H; and use the transport equation (4.14b)
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on H;, along with the assumption that k¢ vanishes in H; to obtain
2D(Ak1 + Tho) = 86k1 + 06k1 — (a0 — B)dk1 — (@ — B)dk1 + 2Wak.
Taking a further D-derivative one gets
2DD(Ak1 + Tha) = D(60 + 08)k1 — (o — B) DSk — (@ — B)Ddry + 2WoDry.  (4.41)
By commuting the D derivatives with the § and § derivatives, it follows that

2DD(AI€1 + TKZQ) 2(55 + gd)Dlﬂ — (304 + B)(SD/Q — (3@ + 5)31)/@1

+ (07 + 07 + 4ai@ + 203 + 2a + 2W3) Dk1.

Note that all terms on the right hand side are proportional to 6 and ¢ derivatives of Dr1,
which by are proportional to kg and its 6 and & derivatives on H;. Therefore,
again, unless our spacetime is the Minkowski solution, kg = 0 holds on H;. Accordingly
one has that

DD (Alil —I-Tlig) =0 on H;.

Again, the latter is a second order ordinary differential equation along the generators of
H1, and so the requirement that Ak + Tko is real on H; is equivalent to requiring that

Ary + 7ro and D (Aky + Tk2) are real on Z.

Summarising the analyses on both H; and Ha:

Lemma 30. The spinor field 44/ is Hermitian on HiUHs, and thereby on the domain
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of dependence of Hq1 U Ha, if and only if the conditions

K1+ K1 = const,

D(k1 —F1) =0,

AD(k1 —F1) =0,

A(k1 —R1) +Thy —TrRe2 =0,

D (A(k1 —F1) +The —ThR2) =0,

are satisfied on Z.

Note that some of these conditions are redundant. For example, we know that Dk,
vanishes on Z due to equation and the vanishing of kg, and so clearly D(k1 —R1)
also vanishes on Z. A similar argument using equation can be used to show that
A(Kk1 — R1) + Tke — Tk vanishes on Z. We can also use the requirement that Re(k1)
is constant on Z to show that the other two conditions are equivalent. Indeed, we have

that

D (A(k1 —R1) + Thke — ThRa) = DA(k1 — R1) — 270kK1 + 270k
= AD(Iﬂ —El) + Tg(/ﬂ — El) —‘r?(;(/il — El)
— 270K + 270

= AD(/Ql — El)
where (4.19g)), the commutator [A, D], and the vanishing of D7 (see Table 4-A)), along
with the conditions dk; = —d&; and 0k; = —R;, have been used.
We compute now ADk;. Eliminating Dko by using (4.21g) the transport equation

(4.15bf) on Z can be seen to reduce to

2ADk1 = (53 + 35)%1 — (30& + B)(s/'il — (3@ + ﬁ)glﬂ — (25 + 25)D/€2 + 2W9kq

= (06 + 06)k1 — (B + B)dk1 + (@ + 3B)0k1 + 2Uak .



Chapter 4. Killing spinor data on non-expanding horizons 165

Replacing § and § derivatives with the & and d operators we obtain
2A Dk, = (66 -+ 68)/11 — (2a + 23)8%1 + (2@ + 25)8/11 + 2Wsk .
The imaginary part of this equation is given by

2AD(I€1 - El) = (68 + 56) (Hl — El) + 2Woky — 2@2%1

=2 [(55%1 + Q\I’QIil) — (55%1 + 2@2E1)} ,

where in the second step the constancy of Re(k1) on Z, along with the commutator (4.3))
applied to the spin weight zero quantity k1, was used.
Putting these results together gives the following result:

Lemma 31. The spinorial field E4ar is Hermitian on Hy U He if and only if on Z the

following conditions are satisfied:

k1 + R1 = const, (4.42a)

00k1 + 2WUsk; s real. (4.42b)

Remark 40. The conditions of Lemma B0l involve derivatives off of the bifurcation
surface Z, in comparison to the conditions obtained in Lemma which are purely

intrinsic to Z.

4.5.3 Summary
We can now integrate the conclusions of Lemma with the conditions provided in

Theorems [L1] and [13] to give the following characterisation result for the Kerr spacetime:

Theorem 14. Let (M, g) be a vacuum spacetime possessing a pair of null hypersurfaces

Hy and Ha generated by expansion and shear-free geodesically complete null congruences,
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intersecting on a 2-dimensional spacelike hypersurface Z2 = Hi N Ha. Given a spin
basis {OA, LA} on Z, assume that there exist constants ¢, M € C such that the following

relations hold on Z:

ko = kg =0, (4.43a)
0%k = 0%k =0, (4.43b)
K3Wy = M, (4.43c)
K1+ Rl = (4.43d)
00k +2Wok1 €R (4.43e)

where Ko, k1, ke are the basis components of a spinor kap with respect to the spin basis

{0%a}. Then, there exist two complex constants ¢ and | such that

in a neighbourhood O of Z in D(HiNHs), where H? = HayHY is the contraction of the
self-dual Killing form with itself (see section for the full definition) and x is the
Ernst potential (see section [2.2.5.1). Furthermore, if ¢ = 1 and | is real and positive,

then (O, g) is locally isometric to a member of the Kerr family of spacetimes.

Proof. Theorem [11]| guarantees the existence of a unique metric in the domain of depen-
dence of the intersecting null hypersurfaces, once initial data is prescribed for the induced
metric and connection on Z, and so confirms the well-posedness of the characteristic
problem. Due to Theorem [13| and Lemma the conditions — guarantee
the existence of a Killing spinor k4p in a neighbourhood O of Z in D(H; N Hz), and
that the associated Killing vector (defined by equation ) is Hermitian. The relation
between the self-dual Killing form and the Ernst potential, and the local isometry to a

member of the Kerr family once the constants ¢, [ are fixed, follows from Proposition

2 O
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Remark 41. In Chapter the asymptotic flatness of the spacetime is used to set
the constants ¢, [ to their required values; however, in the characteristic framework this
assumption is no longer available. The result above requires that these constants be set
manually — this is not physically motivated, but nevertheless must to included to obtain
the characterisation. This illustrates the essential nature of the asymptotic flatness

assumption for identifying the Kerr spacetime.

4.6 Determining x; on Z

Necessary conditions for the existence of a Killing spinor and the Hermiticity of the asso-
ciated Killing vector have now been provided. Following on from these, the implications
of these conditions can be investigated, allowing one to give a explicit formula for x; and
and restriction on the geometry of the bifurcation surface Z. This section proceeds by
solving the conditions

52:%1:0, 82:‘61:0.

4.6.1 Solving the conditions 9%x; = 0 and 9%k, = 0

Consider first the vanishing of 0%k1. As Ok is of spin-weight 1, in virtue of (4.5)), we
get from

52/11 =0

that

Pk, = f(7), (4.44)

where f(Z) is (for the moment) an arbitrary anti-holomorphic function in Z.

Applying once more (4.5 the last relation can also be written as

PP ki = f(7). (4.45)
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As argued in Remark [36] there exists an axial Killing vector field on Z, so it is reasonable
to assume without loss of generality that all the geometric quantities including |P| and

k1 depend only on the modulus |z| of z, and not on the ratio z/z.
Then, by using the fact that d|z|/0z = Z/(2]z|) we get from that
[(212))TH PP Om] 2 = f(2), (4.46)
i.e. there should exist a (possibly) complex constant d* € C such that

(2]2)~! ]P]28|Z|/<;1 =d* and f(z)=d"zZ. (4.47)

A completely analogous argument concludes from the vanishing of 52&1 that
POk, = g(2), (4.48)

where ¢(z) is (for the moment) an arbitrary holomorphic function in Z. This, along with

0|z|/0z = z/(2]z|), gives as above
[(212) 7 PP Ozym] 2 = g(2), (4.49)
thereby with the same constant d* € C the relations
2]z))7 ! \P]28|Z|/11 =d* and g¢g(z)=d"z. (4.50)
can be seen to hold.
The first relation in or in can then be solved for x1 as

. [ 2l
R1 = 2d /|-P|2d|2:’ + C, (451)
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where c is a constant of integration.

Note that in virtue of (4.42a)) k1 must have the form
k1 =c+ix(|z]), (4.52)

where c is a real constant and x(|z|) is a real function. Thereby, as the integral in (4.51)
is real, d* is purely imaginary, i.e. there exists a real number d € R such that 2d* =id

and, in turn,

K1 =c+ z'd/ &;Ldp] . (4.53)

Note that given an arbitrary 2-metric on Z, the complex function P can be calculated,
and from this the exact form of s; satisfying the equations 9%k, = 0%k; = 0 can be
determined. Therefore, the further restrictions placed on k1 by enforcing the Hermiticity

of the Killing vector must also enforce restrictions on the value of P.

4.6.2 Deriving and solving further conditions on x;

Start by the observation that, in virtue of (4.42b)), there must exist (a spin-weight zero)

real function ¢ on Z such that
00k +2Us k1 = ¢ (4.54)

Taking then the complex conjugate of this relation, using that x; is of spin-weight zero
and replacing the complex conjugate of k1 by applying (4.52), the following two relations

can be seen to hold

20 = (I<L1 +E1) (\I’Q +@2) + (Iﬂ —El) (\112 — @2)
= 2c (\IJQ + @2) + 2ix (\Ifg — @2) , (4.55)

200k1 =200k, = 2R Wy — 251 g = =2 [c(Wo — Uy) +ix (Pa+ Ug)] . (4.56)
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Note that (4.56|) can also be written as

- m m
00Kk = — — —5 . 4.57
K1 E% /i% ( )

As Ok is of spin-weight 1, in virtue of (4.5)), we get that
30k = PP Oz(P~'0k1) = |P|? 0z (P~ [P 0.k1]) = |P|? 0:0.51 .

As 0|z|/0z = Z/(2]z]) we also have

1z
8ZKJ1 = §m8‘2| K1

and
1 9 1
00, k1 = Z 8|z\ /€1+*3‘Z| K1

2|

Using then (4.51)) it follows then that

2|
Ozr1 =id o,
and
L d), In(|P|?
1= 1p (1= 1219 ([ PP)] -

Therefore, the second order mixed eth derivative of k; can be written as
= 2 id 2
00k = |P|* 0z0,K1 = T [2 — [2] 0}z In(| P| )} .

In virtue of (4.57)), this can be reformulated as an ”additional” constraint on the confor-

mal factor |P|*:

id m m
i (2 - |Z|8|Z| In |P|2) = - 5

(c—iaf %dmf (c+id [ fkalz])
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In other words, the requirement that the Killing vector ¢ is Hermitian on H; U Hso gives
constraints on the allowed geometry of the bifurcation surface Z. This equation can be

thought of as an integrability condition on the complex function P for there to exist a

solution to the system of equations (4.43al)-(4.43¢]).

4.7 Identifying the Schwarzschild spacetime

Equation provides an explicit expression for k1 on Z in terms of the complex factor
P; this factor is determined by the conformal relation between the induced metric o on
Z and the round metric on S%. In particular, by making the further assumption that o is
a constant multiple of the round metric (i.e. the round metric on a sphere of radius R),
we can hope to be able to single out the Schwarzschild spacetime from the larger class of
spacetimes satisfying the conditions of Theorem [13|and Lemma The surface Z in the
exact Schwarzschild spacetime of mass M is metrically S? with radius R = 2M; this can
be seen by writing the Schwarzschild metric in Kruskal-Szekeres coordinates (U, V, 6, ¢),
at which point the radius of the bifurcation sphere (given by the surface {U =V = 0})

can be simply read off.

By assuming that the metric induced on Z is
oap dz® da’ = —R? (d6? + sin® 0 d¢?)

with radius R, equation (4.15.116) of [45] gives the exact form for P:

_1+z§

RV2'

and equation (4.15.113) gives the relationship between the complex coordinate function

z and the standard spherical polar coordinates on the sphere:

; 0
z= e cot 2 (4.58)
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Using this, the explicit formula for x; in equation (4.53)) can be simplified:

2
o c+z‘d32/|z’2dyz\
(1 +[2]%)

1
_ a2 (g
=c+1idR <b 1_'_’2‘2)

where b is a real constant of integration. Substituting in the form of z given in (4.58)

and simplifying,

1 1
K1 = ¢+ idR? (b — 2) + §idR2 cos 6

= ¢+ idcosf

where the constants have been combined into é € C and d € R.

The requirement (4.35) needed for Theorem (13| now gives an explicit form for the

Weyl scalar Wo:

<5 + ¢d cos 9)

However, as remarked in Section[4.2.1.1] the Gaussian curvature of Z is kg = —2 Re(¥);
this must be equal to the Gaussian curvature of a metric sphere of radius R = 2M, i.e.
kG = —ﬁ. The only way for this to hold identically is for the constant d to vanish,

meaning on Z

X
A

I

™\

Now, consider condition (4.54]), itself a consequence of Lemma The constancy of

k1 means that this condition can be written as

M = %@2 (4.59)

for some real function ¢ on Z. Recall from equation (2.41]) the definition of [ (the

proportionality constant linking the norm of the self-dual Killing form to the Ernst
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potential) in terms of 9:

(641
81 om?
256 1
81 2t

Remark 42. As ¢ is a real function on Z (and is, in fact, constant on Z due to the
constancy of both 9t and k1), [ is real and positive if and only if ¢ is either real or
pure imaginary. However, from Proposition [2] we know that to identify a member of
the Kerr family (in this case, the Schwarzschild metric), this constant must be real and
positive. In other words, there exists a large class of solutions to the conditions given in
Theorem with metrically spherical bifurcation surfaces, that are not isometric to a
member of the Kerr family (and in particular the Schwarzschild solution). Therefore, in
order to single out the Schwarzschild solution, further conditions must be imposed. This
calculation illustrates the essential nature of the asymptotic flatness assumption used in
Theorem [3] and the difficulty in finding physically motivated local conditions to achieve

the same result.

4.8 Conclusions

The analysis in this chapter identifies a set of conditions (given in —) that
must be satisfied on the bifurcation surface Z of the non-expanding horizon structure
H1 N Hg, in order to guarantee (relying on the results of Rendall [48]) the existence of
a Killing spinor in a region O, the intersection of a neighbourhood of Z with the future
development of H; U Hs. A result due to Luk [38] has extended the region of existence
of a unique solution to the Einstein equations to a neighbourhood of the horizons H;
and Ho, as long as the constraint equations are satisfied there. One would expect to

find that the region of existence of the Killing spinor can also be extended in this way.
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Furthermore, by extending the region of existence to the length of the horizon one can
investigate the behaviour of the relevant fields in the infinite affine parameter limit;

considering the set-up in a conformal setting may be useful for studying this.

However, although the class of spacetimes referred to as ‘distorted’ black holes is
known to include the Kerr family, it has been illustrated here that conditions for the
existence of a Killing spinor in the spacetime development of the characteristic initial data
are insufficient to single out the Kerr family from this larger class. Whereas asymptotic
flatness could be used in previous chapters, here there is no obvious physically motivated
way to fix the additional local conditions required to identify the Kerr family. A potential
solution could be to investigate the behaviour of the relevant fields in the infinite affine

parameter limit along the generators of the horizons, as previously mentioned.

Another avenue of investigation would be determining whether the existence result
can be extended to a full neighbourhood of the horizon, rather than being restricted to
the future development. Theorem [I4]is a Killing spinor analogue of the rigidity results
in [27], which themselves were extended to a full neighbourhood in [2]. It would be very
interesting to see whether the ideas from [2] can be adapted for the results laid out in

this chapter, to obtain a statement in the domain of outer communication.

This analysis has considered only for vacuum case, but in principle it could be
extended fairly straightforwardly to electrovacuum spacetimes, yielding an existence
result for a Killing spinor in a neighbourhood of the horizons and helping to characterise
the Kerr-Newman solution via Proposition [3] However, this generalisation would be
expected to suffer from the same problem as the vacuum case, namely that the required

constants must be set locally rather than using an asymptotic condition.



Chapter 5

Conclusions

In this thesis, the use of Killing spinors as a valuable construction for characterising
Kerr and Kerr-Newman spacetimes has been explored. The existence of a Killing spinor
corresponds to the presence of a ‘hidden symmetry’ of the underlying spacetime, so the
sufficiency of this condition (along with asymptotic conditions) is evidence that this
symmetry is a special feature of the Kerr-Newman family, singling it out from the larger
class of spacetimes with these asymptotic properties. In fact, the required asymptotic
conditions are not particularly restrictive - a physically motivated, spatially isolated black

hole (like those observed in our universe) would be expected to fulfil these requirements.

In Chapter [2| it was shown that the hypotheses of characterisations due to Mars (for
the Kerr family) and Wong (for the Kerr-Newman family) can be fulfilled by the existence
of a Killing spinor on the spacetime. This takes the form of a local result requiring certain
constants to be fixed manually, and global results without this requirement, utilising the
assumption of asymptotic flatness. The lack of a simple, physically motivated way of
setting these constants without the asymptotic flatness condition suggests that it is an

essential feature of Kerr-Newman characterisation results.

In Chapter [3] the justification of the importance of Killing spinors was put to use.

In an analogous procedure to the derivation of the KID equations (see [10]), conditions
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for a symmetric 2-spinor k4p can be found on an initial data set which guarantees the
existence of a Killing spinor on the resulting unique development of the initial data.
This is done by constructing a set of wave equations for a set of ‘zero quantities’ which
vanish in the presence of a true Killing spinor; the requirement of trivial initial data for
this system gave the desired conditions. A key feature is the fact that these conditions
are overdetermined, and so for arbitrary initial data sets do not admit solutions. By
extending this system to an elliptic system, which always admits a unique solution for
initial data with asymptotic conditions matching those of the Kerr-Newman spacetime,
an approximate Killing spinor can be constructed on the initial data set. The fact that
this candidate spinor can be found for any initial data set (with suitable asymptotic
behaviour) is the key criterion in this analysis, allowing the geometric invariant con-
structed as the norm of the Killing spinor initial data (under a suitable inner product)
to be interpreted as a measure of how much the Killing spinor initial data conditions are
violated. For example, to study the behaviour of a perturbed Kerr-Newman black hole,
one could calculate this invariant at successive time slices of the evolved spacetime; if the
spacetime ‘settles’ to the exact Kerr-Newman solution, one could conjecture that it will
decay to zero. In order for this to be useful in numerical studies, further properties of
the constructed geometric invariant need to be established: in particular, its behaviour
under time evolution. As mentioned in section in order to do this an evolution
equation for the approximate Killing spinor must be found which respects the elliptic
approximate Killing spinor equation on each leaf of the foliation. If such an equation
can be found, then its form would determine the behaviour of the approximate spinor

under evolution and provide details of the behaviour of the geometric invariant also.

In Chapter [ the discussion was moved from spacelike initial data sets to the char-
acteristic problem. The motivation for doing so was provided by the construction of
so-called ‘distorted black holes’, possessing a non-expanding and shear free bifurcate
horizon structure. In a similar way to the case of spacelike initial data, conditions on

the horizon structure can be found which corresponded to trivial initial data for a sys-
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tem of wave equations for a set of zero-quantities. A key observation in this case is the
fact that these conditions can be restricted to the bifurcation surface Z, rather than
being required on the extended horizon structure. Furthermore, the Hermiticity of the
associated Killing vector can also be guaranteed by conditions only on the bifurcation
surface; in particular, all of the assumptions of Proposition [2| can be fulfilled by condi-
tions only on Z. However, it is shown that these conditions are insufficient to fix the
constants of Proposition [2 in order to single out the Kerr spacetime specifically. The
conclusion reached is that the class of ‘distorted’ black hole spacetimes includes but is
not exhausted by the Kerr family. Further restrictions on the definition of a ‘distorted’
black hole would be required to do this; at this moment, it is unclear if there exists a

physically motivated, or even mathematically satisfying, way to do this.
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