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Abstract

In this thesis, the implications of the existence of Killing spinors in a spacetime are

investigated. In particular, it is shown that in vacuum and electrovacuum spacetimes

a Killing spinor, along with some assumptions on the associated Killing vector in an

asymptotic region, guarantees that the spacetime is locally isometric to a member of the

Kerr or Kerr-Newman family. It is shown that the characterisation of these spacetimes

in terms of Killing spinors is an alternative expression of characterisation results of

Mars (Kerr) and Wong (Kerr-Newman) involving restrictions on the Weyl curvature and

matter content.

In the next section, the construction of a geometric invariant characterising initial data

for the Kerr-Newman spacetime is described. This geometric invariant vanishes if and

only if the initial data set corresponds to exact Kerr-Newman initial data, and so char-

acterises this type of data. First, the characterisation of the Kerr-Newman spacetime in

terms of Killing spinors is illustrated. The space spinor formalism is then used to obtain

a set of four independent conditions on an initial Cauchy hypersurface that guarantee

the existence of a Killing spinor on the development of the initial data. Following a sim-

ilar analysis in the vacuum case, the properties of solutions to the approximate Killing

spinor equation are studied, and used to construct the geometric invariant.

Finally, the problem of Killing spinor initial data in the characteristic problem is investi-

gated. It is shown that data need only be specified on the bifurcation surface of the two

intersecting null hypersurfaces in order to guarantee the existence of a Killing spinor in

a neighbourhood of the bifurcation surface. This characterises the class of spacetimes

known as distorted black holes, which include but is strictly larger than the Kerr family

of spacetimes.
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Chapter 1

Background

1.1 The Einstein equations

The theory of general relativity is a mathematical model of gravity, where the system of

consideration is represented by a spacetime. This consists of a pair (M, g), containing:

1. A differentiable manifold M:

A differentiable manifold is a Hausdorff, paracompact topological spaceM, together

with a collection of charts {Ui, ψi} containing open sets Ui of M, which satisfy:

(a) M =
⋃
i Ui (the sets cover M).

(b) For all i, there exists a bijection ψi : Ui → Vi, where Vi is some open subset

of Rn.

(c) If Ui∩Uj 6= ∅, then the transition maps ψj ◦ψ−1i from ψi(Ui∩Uj) to ψj(Ui∩Uj)

are continuously differentiable.

The manifold is k-differentiable if the transition maps are k-times continuously

differentiable, and smooth if the transition maps are infinitely differentiable. The

10



Chapter 1. Background 11

manifolds considered in this thesis will be assumed to be smooth and 4-dimensional.

2. A Lorentzian metric field g:

Consider the space of tangent vectors to smooth curves γ :M→ R passing through

p ∈ M. These are defined as linear maps from the space of smooth functions on

M to R, given by:

Xp(f) :=
d

dt
(f(γ(t))) |t=0.

It can be shown that this forms a vector space at p, called the tangent space TpM.

Then, the metric at p is a multilinear map:

g : TpM× TpM→ R

that is symmetric (g(X,Y ) = g(Y,X)) and non-degenerate (g(X,Y ) = 0 for all

Y ∈ TpM if and only if X = 0). It is often represented in component form as

a real n by n matrix. As a real symmetric matrix, it is diagonalisable, with the

eigenvalues of g on the diagonal; non-degeneracy ensures all of these eigenvalues

are non-zero. The signature of g is defined by the number of positive and negative

eigenvalues; in 4-dimensional general relativity, we consider Lorentzian metrics,

with one positive and 3 negative eigenvalues, denoted (+−−−) (it is common for

the signature to be defined to be (− + ++), but we will keep the ‘mostly-minus’

convention in order to be consistent with the spinor formalism discussed later). A

Lorentzian metric field is a smooth choice of Lorentzian metric gp at every point

p ∈ M (i.e. such that the map p → gp(X|p, Y |p) is a smooth function of p for all

smooth vector fields X,Y ∈ TM, the tangent bundle of M).

Furthermore, a spacetime metric is required to satisfy the Einstein equations:

Ric[g]− 1

2
R[g] g = 8πT

where Ric[g] is the Ricci curvature tensor of g, R[g] is the Ricci scalar (the trace of
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the Ricci tensor) and T is the energy-momentum tensor, describing the distribution of

matter and energy in the spacetime.

Remark 1. Using index notation, this equation can be written

Rab −
1

2
Rgab = 8πTab

We will use the Einstein summation convention (for both tensor and spinor indices)

throughout this thesis.

Remark 2. A symmetry of the Riemann curvature tensor known as the Bianchi identity

gives rise to the conservation of energy-momentum:

∇aTab = 0

This can also be interpreted as providing the equations of motion for the matter content

of the spacetime.

In this thesis, we will be considering two choices of energy-momentum tensor: first

the vacuum choice, Tab = 0, in which case the Einstein equations reduce to:

Rab = 0

and secondly the electrovacuum choice, describing a spacetime containing only electro-

magnetic fields, where the energy momentum tensor takes the form

Tab =
1

4π
(FacF

b
c −

1

4
gabFcdF

cd).

Here, Fab is the Faraday tensor, completely determined by the electric and magnetic

vector fields E and B (upon choice of a timelike vector ua). The conservation of energy-

momentum gives rise to the Maxwell equations, and the Einstein equations restricted to

this choice of energy-momentum tensor are referred to as the Einstein-Maxwell equations,

and reduce to the vacuum Einstein equations when the electromagnetic fields vanish.
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1.2 The Kerr-Newman solution

1.2.1 The Kerr-Newman metric and its properties

Solutions to the full Einstein-Maxwell equations are in general hard to find; they consist

of a system of multi-dimensional, coupled partial differential equations, and so currently

known exact solutions in general assume restrictions such as symmetries or algebraic

speciality. For example, the Schwarzschild solution was one of the first non-trivial exact

solutions to the vacuum Einstein equations to be found, under the assumption of spherical

symmetry, in [52] (and is the unique such spacetime due to Birkhoff’s theorem, see [13]).

The Schwarzschild solution is now understood to represent the gravitational field of

a spherically symmetric and stationary black hole; it possesses a curvature singularity

at area radius r = 0, and an event horizon at r = 2M , where M is the mass parameter

of the solution. However, it is not believed to be an accurate description of a physical

black hole, which is expected to have a non-zero angular momentum J which breaks the

assumption of spherical symmetry. Thus, after discovery of the Schwarzschild solution in

1916, there was significant effort to find a generalisation possessing angular momentum.

The search took considerably longer than expected, but such a solution was finally found

by Kerr in 1963 [36], now called the Kerr solution and expressed here in Boyer-Lindquist

coordinates (t, r, θ, φ):

ds2 =− ∆− a2 sin2 θ

Σ
dt2 − 2a sin2 θ

r2 + a2 −∆

Σ
dtdφ (1.1)

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2

where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. The solution possesses a number of

properties desirable for describing a rotating black hole:

• The solution is stationary and axisymmetric (admits the two Killing vectors ∂t, ∂φ).

• The solution depends on 2 parameters M,a, determining the mass (M) and angular
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momentum (J = aM) of the black hole. Therefore, (1.1) actually represents a

family of vacuum solutions, referred to as the Kerr family; however, for simplicity

one often uses the Kerr solution to refer to a member of this family, or as referring

to the family as a whole.

• In the limit r →∞, the metric reduces to the Minkowski metric, i.e. the solution

is asymptotically flat.

• When the rotation parameter a is set to zero, the metric reduces to the Schwarzschild

metric.

• There is a curvature singularity at r = 0, and an event horizon at r = M +
√
M2 − a2.

• Like the Schwarzschild solution, the Kerr solution has 2 asymptotically flat ends

(see section 2.3 for the full definition), but it can also be extended to asymptotically

flat regions to the past and future of the singularity. However, generically rotating

black holes are expected to exhibit singular behaviour along the Cauchy horizon

(the boundary of the globally hyperbolic region of the spacetime – see section 1.3),

providing confirmation of the strong cosmic censorship hypothesis. Justification for

the inextendibility of the metric past the Cauchy horizon in a sufficiently regular

way is given in [21]; there, it is shown that although the metric can be extended

across the Cauchy horizon as a C0 field, it generically exhibits a “weak null sin-

gularity” (for example, preventing extendibility as a C2 metric). Thus, a modified

version of the strong cosmic censorship hypothesis is preserved.

This vacuum solution can be extended to a solution to the Einstein-Maxwell equations
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in a straightforward way, called the Kerr-Newman solution:

ds2 =− ∆− a2 sin2 θ

Σ
dt2 − 2a sin2 θ

r2 + a2 −∆

Σ
dtdφ

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2

A =− Qr(dt− a sin2 θdφ)

Σ

(1.2)

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 + Q2, and the Faraday tensor F of the

solution is the exterior derivative of the electromagnetic 4-potential, F = dA. The

solution now depends on 3 parameters (M,a,Q), with the new parameter Q having the

interpretation of electric charge. The expression for the 4-potential A is not unique –

the gauge transformation A→ A+ dχ for an arbitrary scalar field χ preserves the value

of the Faraday tensor, and so is a solution to the Einstein-Maxwell equations with the

same metric; It is clear that the Kerr-Newman solution reduces to the Kerr solution

when Q = 0, and it possesses many of the same physical properties as the Kerr solution.

Although the Kerr-Newman solution is a solution to a more general set of equations, in

reality we expect to only observe Kerr black holes in the universe - charged black holes

would attract matter of the opposite charge, thereby reducing the charge of the black

hole to zero, over a short time frame.

1.2.2 The Carter constant and hidden symmetries

As mentioned above, each member of the Kerr-Newman family admits two Killing vec-

tors, representing two isometries of the spacetime. These vectors are ∂t, representing sta-

tionarity, and ∂φ, representing axisymmetry. A consequence of the existence of these two

symmetries is the existence of conserved quantities for observers moving along geodesics.

Explicitly, if Xa is the tangent vector to a geodesic of a Kerr-Newman spacetime, then
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the quantities

E = gabX
a(∂t)

b

L = gabX
a(∂φ)b

are conserved along the geodesic. Along with the Hamiltonian H = gabX
aXb of the

particle (determined by the particle’s mass), this provides 3 conserved quantities for an

observer moving along a geodesic.

This falls short of the 4 conserved quantities needed, in the special case of a 4-

dimensional spacetime, to allow the geodesic equation to be completely integrated. How-

ever, an interesting property of the Kerr-Newman metric is the existence of a further

conserved quantity, known as the Carter constant (found by Carter in [14]). The exis-

tence of this constant of motion is a direct consequence of the existence of a Killing

tensor field Kab in the Kerr-Newman spacetime, satisfying a modification of the Killing

vector equations:

∇(aKbc) = 0. (1.3)

The Carter constant is then constructed using the Killing tensor and the geodesic tangent

vector Xa:

C = KabX
aXb.

It is straightforward to show that C is conserved along geodesics. Furthermore, when

combined with the 3 conserved quantities described earlier, this allows all geodesics to

be parametrised uniquely by the values of (H,E,L,C), thereby allowing the geodesic

equation to be integrated completely.

The existence of a Killing tensor is a highly non-trivial property of a spacetime, so

it can be considered fortunate that the Kerr-Newman family, one of the most physically

important class of spacetimes, admits such a tensor; in this thesis, the implications of

this fact will be investigated and used to study the ways in which the Kerr-Newman
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solution can be characterised.

1.2.3 Uniqueness and stability of the Kerr-Newman family

The current family of uniqueness results regarding the Kerr-Newman solution contain

assumptions on the spacetime that are often considered too restrictive, such as analyticity

– see e.g. [17] for a review on the subject. There exist a variety of results removing this

assumption – for example, showing that stationary spacetimes with sufficiently small

Mars-Simon tensor must be isometric to a member of the Kerr family, at least in the

exterior region [33]. The latter is of particular relevance here, as the Mars-Simon tensor

is integral to the characterisation of the Kerr spacetime due to Mars [40, 41], which will

be examined in Chapter 2. Although there has been significant progress on proving the

linear stability of the Kerr-Newman solution (for example, by investigating the behaviour

of the Teukolsky equation on a Kerr background [20]), the question of non-linear stability

has been far more stubborn – see e.g. [22] for a discussion on this topic. In particular,

although there exist results for spacetimes with a higher degree of symmetry (such as

the non-linear stability of Schwarzschild under axially symmetric perturbations [37]), the

full non-linear stability of the Kerr-Newman family under arbitrary perturbations is still

an open problem.

1.3 The Cauchy problem

In order to investigate the behaviour of perturbations to Kerr-Newman black holes, it is

useful to be able to specify an ’initial state’ of the spacetime, where initial data specifying

the perturbation is prescribed and evolved to future times. The set-up and theoretical

motivation for this process was first outlined by Fourés-Bruhat in [25], with further

results extending the argument in collaboration with Geroch in [15].

To construct this formalism, we assume that the spacetime can be foliated by a family



Chapter 1. Background 18

St of spacelike partial Cauchy surfaces (surfaces containing points which are not causally

related); otherwise, the spacetime can be restricted to regions where this is true. Such

spacetimes are called globally hyperbolic; the implications of global hyperbolicity are

discussed in [29]. The spacetime metric gab induces an (n− 1)-dimensional Riemannian

metric hij on each St, and each St also admits an extrinsic curvature tensorKij describing

the embedding of the St in the larger manifoldM. Singling out the t = 0 surface, together

the collection (S0, hij ,Kij) constitutes an initial data set for the spacetime.

As the spacetime metric gab is constrained by the Einstein equations, we expect the

induced metric and extrinsic curvature to also be constrained; in fact, by projecting the

Einstein equations along the normal direction to the surface S, we obtain the Hamiltonian

and momentum constraints:

r −KijKij + tr(K)2 = 16πρ

DjK
j
i −DiK = 8πpi

where r is the Ricci scalar of hij , Di is the Levi-Civita connection associated to hij , and

ρ and pi are the matter energy and matter momentum densities respectively, obtained

from the energy momentum tensor Tab. By projecting the Einstein equations fully onto

S, one obtains a set of evolution equations for the data hij ,Kij .

Reversing the perspective, one can ask whether these constraints are sufficient to

reconstruct the full spacetime – in other words, whether an initial data set satisfying

these constraints gives rise to a unique spacetime upon evolution. The following result

due to Choquet-Bruhat and Geroch [15] answers this (in the vacuum case):

Theorem 1. Let (S, hab,Kab) be an initial data set satisfying the constraint equations

in vacuum, consisting of a spacelike partial Cauchy surface S, a Riemannian metric hij

on S, and the extrinsic curvature tensor Kij of S. Then, there exists a unique spacetime

(M, gab) (up to diffeomorphisms) such that:

1. (M, gab) satisfies the vacuum Einstein equations;
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2. (M, gab) is globally hyperbolic, with S a member of the foliation of Cauchy surfaces;

3. hij is the metric on S induced by gab;

4. Kij is the extrinsic curvature of S;

5. (M, gab) is an extension of any other spacetime satisfying the above conditions.

There exist generalisations of this result to spacetimes with non-trivial matter con-

tents – see e.g. the review in [49]. Note that the obtained spacetime is only unique

up to diffeomorphisms; in particular, if (M, g) and (M̃, g̃) are spacetimes satisfying the

conditions of the theorem, then there exists a smooth bijective map φ : M → M̃ with

a smooth inverse, and g̃ = φ∗(g), the pushforward of g with respect to φ. Two diffeo-

morphic spacetimes have equivalent physical properties (such as giving rise to the same

dynamics), and so diffeomorphisms can be thought of as a gauge symmetry of general

relativity.

One can also ask how properties of the larger spacetime are encoded in the initial data,

particularly symmetries. Representing symmetries of a spacetime in terms of conditions

on an initial hypersurface is not a new idea; the Killing initial data (KID) equations – see

e.g. [10] – are conditions on a spacelike Cauchy surface S which guarantee the existence

of a Killing vector in the resulting evolution of the initial data. In this way, isometries of

the whole spacetime can be encoded at the level of initial data. The resulting conditions

form a system of overdetermined equations, so do not necessarily admit a solution for an

arbitrary initial data set. In fact, it has been shown that solutions to the KID equations

are non-generic, in the sense that generic solutions of the vacuum constraint equations

do not possess any global or local spacetime Killing vectors – see [11].

Recalling that the Kerr-Newman spacetime admits a Killing tensor which satisfies

a generalised form of the Killing vector equation, one can now ask whether a similar

procedure can be performed here; explicitly, can one obtain an overdetermined system

on an initial data hypersurface which, when a solution exists, guarantees the existence
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of a Killing tensor in the resulting spacetime? Chapter 3 will address this question.

1.4 Spinors

Throughout this thesis, spinorial methods will be used to simplify the analysis and

illustrate some of the ideas in a more intuitive way. There are conflicting conventions

and notation used across the literature for these methods, so in this section the chosen

conventions to be used in this thesis will be set out. We will for the most part be using

the conventions set out in Stewart [55] and Penrose & Rindler [45, 46].

The curvature spinors ΨABCD,ΦABA′B′ (spinorial counterparts of the Weyl and trace-

free Ricci tensors respectively) and Λ (proportional to the Ricci scalar) are defined by

the relations

�ABξC = ΨABCDξ
D − 2Λξ(AεB)C , �A′B′ξC = ξDΦCDA′B′ (1.4)

where �AB ≡ ∇A′(A∇B)
A′ . In spinorial notation the Einstein-Maxwell equations read

ΦABA′B′ = 2φABφ̄A′B′ , Λ = 0 (1.5)

where φAB = φ(AB) is the Maxwell spinor satisfying

∇AA′φAB = 0. (1.6)

The Bianchi identity in electrovacuum spacetimes takes the form

∇AA′ΨABCD = 2φ̄A′B′∇ B′
B φCD. (1.7)

We systematically use of the following expression for the (once contracted) second deriva-
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tive of a spinor:

∇AQ′∇BQ
′

=
1

2
εAB� + �AB. (1.8)

In particular, from the Maxwell equation (1.6) it follows that

∇A′BφCD = ∇A′(BφCD). (1.9)

Our conventions for the curvature are that

∇c∇dub −∇d∇cub = Rdca
bua.

Given an antisymmetric rank 2 tensor Fab, the Hodge dual of Fab is defined by

F ?ab ≡
1

2
εab

cdFcd. (1.10)

The self-dual version of Fab is then defined by

Fab ≡ Fab + iF ?ab. (1.11)

1.5 The space-spinor formalism

In what follows assume that the spacetime (M, g) obtained as the development of Cauchy

initial data (S, hij ,Kij) can be covered by a congruence of smooth timelike curves with

tangent vector τa satisfying the normalisation condition τaτ
a = 2. The reason for nor-

malisation will be clarified in the following – see equation (1.15). Associated to the

vector τa one has the projector

ha
b ≡ δab −

1

2
τaτ

b (1.12)

projecting tensors into the distribution 〈τ 〉⊥ of hyperplanes orthogonal to τa.
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Remark 3. The congruence of curves does not need to be hypersurface orthogonal –

however, for convenience it will be assumed that the vector field τa is orthogonal to the

Cauchy hypersurface S.

Now, let τAA
′

denote the spinorial counterpart of the vector τa – by definition one

has that

τAA′τ
AA′ = 2. (1.13)

Let {oA, ιA} denote a normalised spin-dyad satisfying oAι
A = 1. In the following we

restrict the attention to spin-dyads such that

τAA
′

= oAōA
′
+ ιAῑA

′
. (1.14)

It follows then that

τAA′τ
BA′ = δA

B, (1.15)

consistent with the normalisation condition (1.13). As a consequence of this relation, the

spinor τAA
′

can be used to introduce a formalism in which all primed indices in spinors

and spinorial equations are replaced by unprimed indices by suitable contractions with

τA
A′ .

Remark 4. The set of transformations on the dyad {oA, ιA} preserving the expansion

(1.14) is given by the group SU(2,C). In particular, a general linear transformation of a

spinor dyad {oA, ιA} of the form oA 7→ αoA + βιA, ιA 7→ γoA + διA must be an element

of SL(2,C) to preserve the normalisation condition oAι
A = 1; it is an easy exercise to

show that unitarity is a necessary and sufficient condition to preserve the form of (1.14).

1.5.1 The Sen connection

The space-spinor counterpart of the spinorial covariant derivative ∇AA′ is defined as

∇AB ≡ τBA
′∇AA′ . (1.16)



Chapter 1. Background 23

The derivative operator ∇AB can be decomposed in irreducible terms as

∇AB =
1

2
εABP +DAB (1.17)

where

P ≡ τAA′∇AA′ = ∇QQ, DAB ≡ τ(AA
′∇B)A′ = ∇(AB).

The operator P is the directional derivative of ∇AA′ in the direction of τAA
′

while DAB

corresponds to the so-called Sen connection of the covariant derivative ∇AA′ implied by

τAA
′
.

1.5.2 The acceleration and the extrinsic curvature

Of particular relevance in the subsequent discussion is the decomposition of the covariant

derivative of the spinor τBB′ , namely ∇AA′τBB′ . A calculation readily shows that the

content of this derivative is encoded in the spinors

KAB ≡ τBA
′PτAA′ , KABCD ≡ τDC

′DABτCC′ (1.18)

corresponding, respectively, to the spinorial counterparts of the acceleration and the

Weingarten tensor, expressed in tensorial terms as

Ka ≡ −
1

2
τ b∇bτa, Kab ≡ −hachbd∇cτd.

It can be readily verified that

KAB = K(AB), KABCD = K(AB)(CD). (1.19)
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In the sequel it will be convenient to express KABCD in terms of its irreducible compo-

nents. To this end define

ΩABCD ≡ K(ABCD), ΩAB ≡ K(A
Q
B)Q, K ≡ KAB

CD, (1.20)

so that one can define

KABCD = ΩABCD −
1

2
εA(CΩD)B −

1

2
εB(CΩD)A −

1

3
εA(CεD)BK. (1.21)

If the vector field τa is hypersurface orthogonal, then one has that ΩAB = 0, and thus

the Weingarten tensor satisfies the symmetry Kab = K(ab) so that it can be regarded as

the extrinsic curvature of the leaves of a foliation of the spacetime (M, g). If this is the

case, in addition to the second symmetry in (1.19) one has that

KABCD = KCDAB.

In particular, KABCD restricted to the hypersurface S satisfies the above symmetry and

one has ΩAB = 0 – cfr. Remark 3.

In what follows denote by DAB = D(AB) the spinorial counterpart of the Levi-Civita

connection of the metric hij on S. The Sen connection DAB and the Levi-Civita con-

nection DAB are related to each other through the spinor KABCD. For example, for a

valence 1 spinor πA one has that

DABπC = DABπC +
1

2
KABC

QπQ,

with the obvious generalisations for higher order spinors. A consequence of this rela-

tionship is that, even when τ is hypersurface-orthogonal, the Sen connection does not

coincide with the Levi-Civita connection - for example, the Sen connection will in general

have a non-zero torsion. The definition of the Sen connection as an irreducible compo-
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nent of the projection of the covariant derivative operator means that it is a natural

choice of differential operator in this setting; if needed, equations using the Sen connec-

tion can be transformed to ones involving the induced Levi-Civita connection via the

above relation.

1.5.3 Hermitian conjugation

Given a spinor πA, its Hermitian conjugate is defined as

π̂A ≡ τAQ
′
π̄Q′ . (1.22)

This operation can be extended in the obvious way to higher valence pairwise symmetric

spinors. The operation of Hermitian conjugation allows to introduce a notion of reality.

Given spinors νAB = ν(AB) and ξABCD = ξ(AB)(CD), we say that they are real if and

only if

ν̂AB = −νAB, ξ̂ABCD = ξABCD.

If the spinors are real then it can be shown that there exist real spatial 3-dimensional

tensors νi and ξij such that νAB and ξABCD are their spinorial counterparts. We also

note that

νAB ν̂
AB ≥ 0, ξABCD ξ̂

ABCD ≥ 0

independently of whether νAB and ξABCD are real or not.

Finally, it is observed that while the Levi-Civita covariant derivative DAB is real in

the sense that

D̂ABπC = −DABπ̂C ,

the Sen connection DAB is not. More precisely, one has that

D̂ABπC = −DABπ̂C +
1

2
KABC

Qπ̂Q. (1.23)
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1.5.4 Commutators

The main analysis of this section will require a systematic use of the commutators of

the covariant derivatives P and DAB. In order to discuss these in a convenient manner

it is convenient to define the Hermitian conjugate of the Penrose box operator �AB ≡

∇C′(A∇B)
C′ in the natural manner as

�̂AB ≡ τAA
′
τB

B′�A′B′ .

From the definition of �A′B′ it follows that

�̂ABπC = τA
A′τB

B′ΦFCA′B′π
F .

In terms of �AB and �̂AB, the commutators of P and DAB read

[P,DAB] = �̂AB −�AB −
1

2
KABP +KD

(ADB)D −KABCDDCD, (1.24a)

[DAB,DCD] =
1

2

(
εA(C�D)B + εB(C�D)A

)
+

1

2

(
εA(C�̂D)B + εB(C�̂D)A

)
+

1

2

(
KCDABP −KABCDP

)
+KCDF (ADB)

F −KABF (CDD)
F . (1.24b)

Remark 5. Observe that on the hypersurface S the commutator (1.24b) involves only

objects intrinsic to S. Notice, also, that the Sen connection DAB has torsion. Namely,

for a scalar φ one has that

[DAB,DCD]φ = KCDF (ADB)
Fφ−KABF (CDD)

Fφ.

1.6 Outline of the thesis

Chapter 2 investigates the implications of the existence of Killing spinors in a

spacetime. In particular, it is shown that in electrovacuum spacetimes the existence
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of a Killing spinor, along with some assumptions on the associated Killing vector in

an asymptotic region, guarantees that the spacetime is locally isometric to the Kerr-

Newman solution. This extends work by Bäckdahl and Valiente Kroon [6], which proved

the vacuum case; in electrovacuum spacetimes, a further assumption linking the electro-

magnetic content to the Killing spinor is necessary. It is shown that the characterisation

of these spacetimes in terms of Killing spinors is an alternative expression of character-

isation results of Mars (Kerr) and Wong (Kerr-Newman) involving restrictions on the

Weyl curvature and matter content; in particular, the existence of a Killing spinor gives

rise to a set of constants linking the Ernst potential, Killing form and Faraday tensor,

which when set to certain values single out the exact Kerr or Kerr-Newman solutions.

It is shown that the additional assumption of asymptotic flatness sets these constants to

the required values automatically.

Chapter 3 describes the construction of a geometric invariant characterising initial

data for the Kerr-Newman spacetime. This geometric invariant vanishes if and only if the

initial data set corresponds to exact Kerr-Newman initial data, and so characterises this

type of data. Making use of the characterisation of the Kerr-Newman solution in terms

of Killing spinors given in Chapter 2, the space spinor formalism is then used to obtain

a set of four independent conditions on an initial Cauchy hypersurface that guarantee

the existence of a Killing spinor on the development of the initial data. Following an

analysis similar to that of the vacuum case given in [6], the properties of solutions to the

approximate Killing spinor equation are used to construct the geometric invariant.

Chapter 4 investigates the problem of Killing spinor initial data in the characteristic

problem. The motivation for investigating this comes from the fact that a spacetime

admitting a bifurcate Killing horizon can be uniquely determined (at least in the domain

of dependence of the horizon structure) once initial data is provided on the bifurcation

surface. In a similar way, it is shown that data for a Killing spinor candidate field need

only be specified on the bifurcation surface of the bifurcate horizon in order to guarantee

the existence of a Killing spinor in a neighbourhood of the bifurcation surface. This
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characterises the class of spacetimes known as distorted black holes, which includes but

is strictly larger than the Kerr family of spacetimes.

Finally, Chapter 5 will provide a brief summary of the contents of each chapter, as

well as some observations regarding interpretations as well as limitations of the obtained

results.



Chapter 2

Killing spinors as a

characterisation of rotating black

hole spacetimes

The contents of this chapter reproduces the arguments and results given in the paper

[18].

2.1 Introduction

The Kerr spacetime, describing a rotating black hole in vacuum, is one of the most

interesting exact solutions to the Einstein field equations. As well as having physical

relevance, the existence of various incarnations of uniqueness theorems (see e.g. [17]

and references within for a survey of this vast topic) has cemented its place as one

of the most important vacuum solutions mathematically and physically. There also

exist generalisations to spacetimes containing restricted forms of matter – for example,

the Kerr-Newman solution to the Einstein-Maxwell equations. Although less physically

relevant than the vacuum case, these solutions still retain many interesting features of the

29
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Kerr solution, including uniqueness under further assumptions on the matter content.

Thus, these generalisations still retain a mathematical importance.

The remarks in the previous paragraph justify the attention given to finding charac-

terisations of the Kerr spacetime and its relations – see e.g. [24, 40]. Such characteri-

sations can be used to study various open questions about these black hole spacetimes.

For example, they can be used to reformulate uniqueness theorems and clarify rela-

tions between them; study the stability of the solutions, by indicating the behaviour of

perturbations; and illustrate the special characteristics of these particular solutions, in

particular through the use of symmetries – see e.g. [3] for a recent discussion on these

and related ideas. The last of these is elegantly achieved through the use of Killing

spinors. Closely related to Killing-Yano tensors, these spinorial objects represent “hid-

den symmetries” of the spacetime, which cannot be represented using Killing vectors. It

has been shown previously (see [4, 6, 7]) that a vacuum spacetime admitting a Killing

spinor, along with conditions on the Weyl curvature and an asymptotic condition, must

be isometric to the Kerr spacetime. This result crucially depends on a result of Mars

(see [41]) which uses the structure of the Weyl tensor, and its relation to the Killing

vectors of the spacetime, to characterise the Kerr solution in a way that exploits to the

maximum possible extent the asymptotic flatness of the spacetime – more precisely, it is

required that the self-dual Killing form of the stationary Killing vector is an eigenform

of the self-dual Weyl tensor.

The characterisation of the Kerr spacetime by Mars given in [41] relies on a previous

characterisation of this solution to the vacuum Einstein field equations in terms of the

vanishing of the so-called Mars-Simon tensor – see [40]. Interestingly, the latter charac-

terisation has been generalised to the electrovacuum case by Wong [56] assuming some

restrictions on the matter content. This characterisation is not optimal, in the sense that

it assumes the existence of certain relations among the relevant geometric objects; by

contrast, in [40], the existence of the vacuum counterpart of these relations is a conse-

quence of the characterisation. Nevertheless, as a consequence of the analysis in [56], one
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may expect that the Kerr-Newman solution can be characterised by the use of Killing

spinors in a similar way to the vacuum case. The characterisations in both [40] and [56]

come in both a local version (in which certain constraints arising in the characterisation

are fixed by evaluating them at finite points of the manifold) and a global version (in

which asymptotic flatness is used to fix the value of the constants). Remarkably, the

generalisation of the characterisation in [41] to the electrovacuum case has, so far, not

been obtained.

The purpose of this chapter is to revisit the characterisation of the Kerr spacetime

using Killing spinors and then generalise to the electrovacuum case using Wong’s result

in [56]. The analysis suggests that Wong’s result can be strengthened to obtain a char-

acterisation of the Kerr-Newman spacetime more in the spirit of Mars’s original result in

[40] and, in turn, be used to obtain a generalisation of the analysis of [41] in which the

Kerr-Newman spacetime is characterised in an optimal way by a combination of local

and global assumptions.

This chapter is organised as follows. Section 2.2 gives an introduction to Killing spinors,

their relation to Killing vectors and investigates the implications on the curvature of the

spacetime. Some time will be spent defining 1-forms and potentials which are useful

for the characterisations later on. In section 2.3, the asymptotic conditions required for

the characterisation theorems are defined. Then, in section 2.4, it is shown that the

conditions of the characterisation result of Mars [41] are satisfied when the spacetime

admits an appropriate Killing spinor. Finally, section 2.5 shows the same for Wong’s

characterisation of the Kerr-Newman spacetime – i.e. the existence of an appropriate

Killing spinor on a electrovacuum spacetime guarantees that the solution is Kerr-Newman

up to an isometry.
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Conventions

In what follows, (M, g) will denote an electrovacuum spacetime satisfying the Einstein

equations with vanishing cosmological constant. The signature of the metric throughout

this thesis will be (+,−,−,−), to be consistent with most of the existing literature using

spinors. We use the spinorial conventions of [45], outlined in Chapter 1. The lowercase

Latin letters a, b, c, . . . are used as abstract spacetime tensor indices while the uppercase

letters A, B, C, . . . will serve as abstract spinor indices. The Greek letters µ, ν, λ, . . . will

be used as spacetime coordinate indices while α, β, γ, . . . will serve as spatial coordinate

indices.

2.2 Killing spinors

The purpose of this section is to provide a summary of the basic theory of Killing spinors

in electrovacuum spacetimes – see [30–32]. Throughout the chapter, (M, g) will denote

an electrovacuum spacetime. Recall that in spinorial notation the Einstein-Maxwell

equations read

ΦABA′B′ = 2φABφ̄A′B′ , Λ = 0

where φAB = φ(AB) is the Maxwell spinor satisfying the Maxwell equation (1.6).

2.2.1 Basic equations

A Killing spinor is a valence-2 symmetric spinor κAB satisfying the equation

∇A′(AκBC) = 0. (2.1)
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By taking a further contracted derivative of this equation, it can be shown that a solution

to equation (2.1) must also satisfy the integrability condition

κ F
(A ΨBCD)F = 0 (2.2)

where ΨABCD is the Weyl spinor, a completely symmetric spinor which is the spinorial

equivalent of the Weyl tensor. This condition restricts the form of the Weyl spinor as it

requires that

ΨABCD ∝ κ(ABκCD).

This proportionality condition forces the spacetime to be of Petrov type D, N or O (i.e.

conformally flat). In particular, if a non-vanishing Killing spinor has a repeated principal

spinor αA so that κAB = α(AαB), then the Weyl spinor has four repeated null directions,

and so it is of Petrov type N. If the Killing spinor is algebraically general, i.e. there exist

αA and βB such that κAB = α(AβB), then the Weyl spinor has two pairs of repeated null

directions, and so it is of Petrov type D.

Algebraically general Killing spinors

In the case that the Killing spinor κAB is algebraically general, the principal spinors αA

and βB can be used to form a normalised spin dyad which we will denote by {oA, ιB}

and such that oAι
A = 1. The Killing spinor κAB is then expanded in terms of the basis

as

κAB = κo(AιB) (2.3)

for some factor of proportionality κ. Due to equation (2.2), the Weyl spinor can be

expanded in a similar way as

ΨABCD = ψo(AoBιCιD) (2.4)

for some factor of proportionality ψ.
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The substitution of expression (2.3) in the Killing spinor equation (2.1) implies restric-

tions on the Newman-Penrose (NP) spin connection coefficients. Namely, one has that

κ = λ = ν = σ = 0,

consistent with the fact that the spacetime is, at least, of Petrov type D.

2.2.2 The Killing vector associated to a Killing spinor

A Killing spinor κAB can be used to define the spinorial counterpart ξAA′ of a (possibly

complex) vector via the relation

ξAA′ ≡ ∇CA′κAC . (2.5)

It can be shown, using the Killing spinor equation (2.1) and commuting covariant deriva-

tives, that ξAA′ satisfies the equation

∇AA′ξBB′ +∇BB′ξAA′ = −6κ C
(A ΦB)CA′B′ .

Therefore, if

κ C
(A ΦB)CA′B′ = 0 (2.6)

then ξAA′ is the spinorial counterpart of a (possibly complex) Killing vector in the space-

time. In what follows, condition (2.6) will be referred to as the matter alignment condi-

tion. In the particular case of an electrovacuum spacetime the matter alignment condi-

tion takes the form

κ(A
CφB)C = 0 (2.7)
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implying that the spinors κAB and φAB are proportional to each other. Thus, in terms

of the basis dyad {o, ι} used to express equation (2.3) one can write

φAB = ϕo(AιB) (2.8)

with ϕ a proportionality factor.

As discussed in [46], the notion of a Lie derivative is, in general, not well defined for

spinors. However, in the case of a Hermitian spinor ξAA
′

associated to a real Killing

vector, and recalling that the Maxwell spinor φAB is the spinorial counterpart of the

Faraday tensor Fab, there exists a consistent expression which can be used to obtain

the spinorial counterpart of LξFab = 0, the derivative of the Faraday tensor along the

integral curves of the real vector field ξ:

LξφAB ≡ ξCC
′∇CC′φAB + φC(A∇B)C′ξ

CC′ . (2.9)

The Maxwell spinor will be said to inherit the symmetry generated by the Killing vector

ξa if LξφAB = 0. Explicitly, the Maxwell spinor φAB and Faraday tensor Fab are related

via the relation

FAA′BB′ = 2φABεA′B′

where FAA′BB′ denotes the spinorial counterpart of the self-dual Faraday tensor Fab =

Fab + iF ?ab.

Remark. In Section 2.2.5.3 it will be shown that in an electrovacuum spacetime

(M, g,F ) endowed with a Killing spinor κAB such that ξAA′ is Hermitian and φAB

and κAB satisfy the alignment condition (2.7) then φAB inherits the symmetry of the

spacetime.
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2.2.3 Relation to Killing-Yano tensors

If a spacetime (M, g) admits a Killing spinor κAB, and the vector ξAA
′

defined by (2.5)

satisfies ξAA
′

= ξ̄AA
′

(i.e. is a real vector), then one can construct a real, valence-2

antisymmetric tensor Yab as the tensorial counterpart of the Killing spinor:

YAA′BB′ ≡ i
(
κABεA′B′ − κ̄A′B′εAB

)
which, as a consequence of (2.1), satisfies the Killing-Yano equation

∇(aYb)c = 0.

Such a tensor is called a Killing-Yano tensor. Conversely, if a spacetime admits a Killing-

Yano tensor Yab, one can construct a valence-2 symmetric spinor κAB from the relation

κAB ≡ −
i

4
εA
′B′ (YAA′BB′ + iY ∗AA′BB′)

which satisfies the Killing spinor equation (2.1) – see e.g. [46], Section 6.7 page 107; also

[44]. Furthermore, if a spacetime admits a Killing-Yano tensor Yab, then it is possible to

construct a new tensor:

Kab ≡ YabYcb

that is a Killing tensor satisfying equation (1.3); accordingly, the spacetime will admit a

Carter-like constant of motion along geodesics.

Remark. The existence of a Killing-Yano tensor for the Kerr-Newman spacetime is a

key ingredient to showing the integrability of the Hamilton-Jacobi equations for geodesic

motion, and the separability of the Maxwell equations and the Dirac equation on the

Kerr-Newman spacetime – see e.g. [34] or [54] for further details.



Chapter 2. Killing spinors as a characterisation of rotating black hole spacetimes 37

2.2.4 The Killing form

In the reminder of this section assume that the matter alignment condition (2.6) is

satisfied, so that ξAA′ is the spinorial counterpart of a Killing vector. Moreover, assume

that ξAA′ is a Hermitian spinor so that, in fact, it is the spinorial counterpart of a real

vector. Then, define the spinorial counterpart of the Killing form of ξa, namely

Hab ≡ ∇[aξb] = ∇aξb (2.10)

by

HAA′BB′ ≡ ∇AA′ξBB′ .

As a consequence of the antisymmetry in the pairs AA′ and BB′ , HAA′BB′ can be decom-

posed into irreducible parts as

HAA′BB′ = ηABεA′B′ + η̄A′B′εAB (2.11)

where ηAB is a symmetric spinor – the Killing form spinor. In the sequel, we will require

the self-dual part of HAA′BB′ , denoted by HAA′BB′ , and defined by

HAA′BB′ ≡ HAA′BB′ + iH?
AA′BB′ .

A direct calculation then yields

HAA′BB′ = 2ηABεA′B′ . (2.12)

Using equation (2.11), the spinor ηAB can be expressed in terms of the Killing vector as

ηAB =
1

2
∇AA′ξBA

′
. (2.13)
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Then, by using (2.5), this can be expanded in terms of the Killing spinor:

ηAB = −3

4
ΨABCDκ

CD. (2.14)

Expansions for the algebraically general case

Assuming that κAB is algebraically general, the basis expansions of κAB and ΨABCD in

(2.3) and (2.4) can be used to find the basis expansion of ηAB:

ηAB =
1

4
κψo(AιB) = ηo(AιB) (2.15)

where

η ≡ 1

4
κψ. (2.16)

2.2.5 The Ernst forms and potentials

Throughout this section let ξa denote a real Killing vector on the electrovacuum space-

time (M, g). A well-known consequence of the Killing equation

∇aξb +∇bξa = 0

and the definition of the Riemann tensor in terms of commutators of covariant derivatives

is that

∇a∇bξc = Rcba
dξd. (2.17)

The Ernst form of the Killing vector ξa is defined as

χa = 2ξbHba. (2.18)

The Ernst form first arose in [23], in which the Einstein equations are reduced to a two-

dimensional non-linear equation (the Ernst equation) under the assumptions of axisym-
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metry and asymptotic stationarity; an explicit solution to this equation allows the metric

to be obtained by solving a system of ODEs. Several properties of the Ernst form follow

from the identity (2.17) recast as

∇aHbc = Rcbadξd (2.19)

where Rabcd denotes the self-dual Riemann tensor. From expression (2.19) it follows,

using the identity

∗R[abc]d =
1

3
εabceR

e
d,

that

∇[aHbc] =
1

3
εcbaeR

e
dξ
d, ∇aHab = −Rbaξa.

A further computation using the above identities and the definition of the Ernst form,

equation (2.18), yields

∇aχb −∇bχa = −2εcbaeξ
cRedξ

d. (2.20)

2.2.5.1 The vacuum case

In vacuum Rabcd = Cabcd, where Cabcd denotes the self-dual Weyl tensor, and so from the

symmetries of the Weyl tensor one concludes that

∇aχb −∇bχa = 0.

Consequently, in vacuum the Ernst form is closed and thus locally exact. This means

that there exists a scalar, the Ernst potential χ, satisfying

χa = ∇aχ.

Now let ξAA′ denote the (Hermitian) spinorial counterpart of the real Killing vector

ξa. If ξAA′ arises from a Killing spinor through the relation (2.5), it follows from the
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spinor decomposition of HAA′BB′ that the spinorial counterpart χAA′ of the Ernst form

χa is given by

χAA′ = 4ηABξ
B
A′

= 3κCFΨABCF∇DA′κDB.

2.2.5.2 The electrovacuum case

In the electrovacuum case the Ernst form is no longer exact – cf. equation (2.20).

However, if the Faraday tensor inherits the symmetry of the spacetime – i.e. LξFab = 0

– then it is possible to construct a further 1-form, the so-called electromagnetic Ernst

form, which can be shown to be closed. In analogy to the definition in (2.18), define

ςa ≡ 2ξbFba. (2.21)

A calculation then shows that

∇aςb −∇bςa = 2LξFab.

If LξFab = 0 then ςa is closed, and therefore locally exact – this means that there exists

a scalar, the electromagnetic Ernst potential ς, which satisfies

ςa = ∇aς.

The spinorial version of equation (2.21) can be readily be found to be

ςAA′ = 4φAB∇QA′κBQ.
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2.2.5.3 Expansions in the algebraically general case

Consider the case of an algebraically general spinor κAB such that ξAA′ as given by

equation (2.5) is Hermitian. In order to find the full basis expansions of χAA′ and ςAA′ ,

the derivative of the proportionality factor κ needs to be calculated. First, note the

expressions for the derivatives of the spin basis vectors in terms of the spin coefficients

from the Newman-Penrose formalism:

∇AA′oB =− αoAoB ῑA′ − βιAoB ōA′ + γoAoB ōA′ + ειAoB ῑA′

− κιAιB ῑA′ + ρoAιB ῑA′ + σιAιB ōA′ − τoAιB ōA′ , (2.22a)

∇AA′ιB = αoAιB ῑA′ + βιAιB ōA′ − γoAιB ōA′ − ειAιB ῑA′

− λoAoB ῑA′ − µιAoB ōA′ + νoAoB ōA′ + πιAoB ῑA′ . (2.22b)

Substituting the basis expansion for the Killing spinor into the Killing spinor equation,

using expressions (2.22a)-(2.22b) and the relation εAB = oAιB − ιAoB, we find that

∇AA′κ = κ (µoAōA′ − πoAῑA′ + τιAōA′ − ριAῑA′) . (2.23)

The expressions obtained in the previous paragraphs allow one to obtain an expression

of the Killing spinor in terms of the spin basis. A calculation starting from the definition

(2.5) readily yields the expression

ξAA′ = −3

2
κ
(
µoAōA′ − πoAῑA′ − τιAōA′ + ριAῑA′

)
.

If ξAA′ is a Hermitian spinor, i.e. ξAA′ = ξ̄AA′ , then the previous expression implies

µ̄κ̄ = µκ, τ̄ κ̄ = κπ, ρ̄κ̄ = κρ. (2.24)

The vacuum case. Using the previous expression along with the basis expansions for
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κAB and ΨABCD, in vacuum, the Ernst form can be expanded as

χAA′ =
3

4
κ2ψ (µoAōA′ − πoAῑA′ + τιAōA′ − ριAῑA′) . (2.25)

Intuitively, one would expect it should be possible to express the Ernst form χ in terms

of the scalars κ and ψ. As it will be seen in Section 2.4, the characterisation of the Kerr

spacetime given by Theorem 2 suggests that a combination of the form c+ 3
4κ

2ψ with c

a constant is a suitable candidate. In order to compute the derivative of this expression

one needs an expression for ∇AA′ψ. This can be obtained from the vacuum Bianchi

identity

∇AA′ΨABCD = 0.

Substituting the basis expansion for the Weyl spinor into the above relation, using equa-

tions (2.22a) and (2.22b), collecting terms and finally making use of εAB = oAιB − ιAoB

one obtains

∇AA′ψ = −3ψ (µoAōA′ − πoAῑA′ + τιAōA′ − ριAῑA′) . (2.26)

Combining this with expression (2.23) for ∇AA′κ we find that

∇AA′
(
c− 3

4
κ2ψ

)
= χAA′

so that the Ernst potential can be written as

χ = c− 3

4
κ2ψ for some c ∈ C.

This expression can be simplified using the following observation: combining expressions

for ∇AA′κ and ∇AA′ψ given by equations (2.23) and (2.26), respectively, it can be shown

that

∇AA′
(
κ3ψ

)
= 0;

therefore, we have that

κ3ψ = M (2.27)
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with M a (possibly complex) constant, and furthermore

χ = c− 3M

4κ
. (2.28)

The electrovacuum case. From the electrovacuum Bianchi identity given by (1.7), a

calculation yields

∇AA′ψ = −3 (ψ + 2ϕϕ̄)µoAōA′ + 3 (ψ − 2ϕϕ̄)πoAῑA′

−3 (ψ − 2ϕϕ̄) τιAōA′ + 3 (ψ + 2ϕϕ̄) ριAῑA′ .

Similarly, using the Maxwell equations (1.6) and the derivatives of the basis vectors given

by equations (2.22a) and (2.22b), the derivative of the Maxwell proportionality factor ϕ

is given by

∇AA′ϕ = −2ϕ (µoAōA′ − πoAῑA′ + τιAōA′ − ριAῑA′) . (2.29)

Thus, a further calculation using the previous expressions yields the following explicit

expression for the electromagnetic Ernst potential:

ςAA′ = 3κϕ
(
µoAōA′ − πoAῑA′ + τιAōA′ − ριAῑA′

)
.

In the electrovacuum case, assuming an algebraically general Killing spinor and that

the Maxwell spinor and the Killing spinor satisfy the matter alignment condition (2.7),

the characterisation of the Kerr-Newman spacetime given in Theorem 4 suggests an

expression for ς in terms of the scalars κ, ψ and ϕ – namely c′ − κ̄ψ̄/2ϕ̄ with c′ a

constant. Combining the above expressions we can conclude that

∇AA′
(
c′ − κ̄ψ̄

2ϕ̄

)
= ςAA′ (2.30)
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so that the potential can be set to be

ς = c′ − 1

2

κ̄ψ̄
ϕ̄

for some c′ ∈ C. (2.31)

Moreover, combining expression (2.23) for ∇AA′κ with (2.29) it is straightforward to

verify that

∇AA′
(
κ2ϕ

)
= 0;

therefore, there exists a (possibly complex) constant Q such that

κ2ϕ = Q. (2.32)

In the electrovacuum case the relation between the scalars κ and ψ takes a more

complicated form than in vacuum – cf. equation (2.27). Given a complex constant C′, a

calculation using expressions (2.23), (2.29) and relation (2.32) shows that

∇AA′
(
C

κ̄
+ κ3ψ

)
= −

(
6|Q|2κµ

κ̄2
+

Cµ̄

κ̄

)
oAōA′ −

(
6|Q|2κπ

κ̄2
+

Cτ̄

κ̄

)
oAῑA′

+

(
6|Q|2κτ

κ̄2
+

Cπ̄

κ̄

)
ιAōA′ +

(
6|Q|2κρ

κ̄2
+

Cρ̄

κ̄

)
ιAῑA′ .

If the spinor ξAA′ is assumed to be Hermitian, then the previous expression reduces to

∇AA′
(
C

κ̄
+ κ3ψ

)
= −κ(C + 6|Q|2)

κ̄2

(
µoAōA′ + πoAῑA′ − τιAōA′ − ριAῑA′

)
.

Thus, by choosing C = −6|Q|2, then the combination C/κ̄ +κ3ψ is a constant – that is,

there exists M′ ∈ C such that

κ3ψ − 6|Q|2

κ̄
= M′. (2.33)
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Therefore, the scalar ψ can be expressed solely in terms of κ as

ψ =
1

κ3

(
M′ +

6|Q|2

κ̄

)
. (2.34)

Note that when the Maxwell field vanishes, then the constant Q also vanishes and this

equation reduces to the vacuum case given by (2.27).

Finally, it is observed that expanding expression (2.9) in terms of the spinor basis

{o, ι} and using expressions (2.15) and (2.29) one concludes, after a calculation, that

LξφAB = 0

– so that φAB inherits the symmetry generated by the Killing spinor κAB.

2.2.6 Spacetimes with an algebraically special Killing spinor

So far, the Killing spinor has been assumed to be algebraically general; in this section,

this assumption is justified by briefly considering electrovacuum spacetimes with an

algebraically special Killing spinor. These spacetimes will not play a role in the remainder

of this chapter. The reason for this is the following result:

Lemma 1. Let (M, g) be a smooth electrovacuum spacetime with a matter content satis-

fying the matter alignment condition and admitting a valence-2 Killing spinor κAB such

that the associated field ξAA
′

is a Hermitian spinor. If κAB is algebraically special (i.e.

κAB = αAαB for some non-vanishing spinor αA) then ξa = 0.

Proof. It follows directly from the existence of a non-vanishing algebraically special

Killing spinor that the spacetime (M, g) must be of Petrov type N – see equation (2.4).

That is, the basis expansion of the Weyl spinor has the form:

ΨABCD = ψαAαBαCαD (2.35)
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for some function ψ. As the matter alignment condition holds by assumption, the Hermi-

tian spinor ξAA′ is the spinorial counterpart of a real Killing vector ξa. The content of the

Killing form of ξa is encoded in the symmetric spinor ηAB. Substituting the expansions

(2.35) and κAB = αAαB into equation (2.14), it follows directly that ηAB = 0. Thus,

the Killing form Hab of ξa vanishes. Accordingly, ξa is a covariantly constant vector on

(M, g):

∇aξb = 0. (2.36)

In order to further investigate the consequences of this observation, introduce a nor-

malised spin dyad {oA, ιA} with oA = αA and oAι
A = 1. The Killing and Maxwell

spinors have the basis expansions

κAB = oAoB, φAB = ϕoAoB.

Substituting the first of the above expressions into the Killing spinor equation∇A′(AκBC) =

0 immediately implies that

γ = α = σ = κ = 0, ρ+ ε = 0, τ + β = 0. (2.37)

Moreover, the Hermitian spinor ξAA′ can be expressed as

ξAA′ = −3βoAōA′ + 3εoAῑA′ .

The spinorial version of equation (2.36) implies DξAA′ = 0, ∆ξAA′ = 0, δξAA′ = 0 and

δ̄ξAA′ = 0. In particular, from ∆ξAA′ = 0 and δ̄ξAA′ = 0, expanding in terms of the basis

one finds that βτ = 0 and ερ = 0. Combining this expression with the third and fourth

conditions in (2.37) produces the conclusion that

τ = β = ε = ρ = 0.
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It follows then that

ξAA′ = 0.

As we want to use the asymptotics of the Killing vector ξAA′ in the characterisation

of the Kerr and Kerr-Newman spacetime, we will rule out the algebraically special case

and assume that the Killing spinor is algebraically general – i.e. κABκ
AB 6= 0.

Remark. Note that because ΨABCD ∝ κ(ABκCD), the conditions ΨABCDΨABCD 6=

0,ΨABCD 6= 0 imply that the Killing spinor is algebraically general and non-zero, i.e.

κABκ
AB 6= 0, κAB 6= 0. These two conditions on the curvature are precisely the ones

assumed in Theorem 6 of [6], and so the characterisation of Kerr in terms of Killing

spinors presented in that article is essentially the same as the one presented here. Despite

this, we reproduce the result here for completeness and ease of comparison with the

electrovacuum case.Here, this is done using the local result of Mars given in [40], whereas

the proof in [6] uses the global result from [41]. In the absence of a generalisation to

the electrovacuum case of the characterisation of [41], the analysis of the Kerr-Newman

spacetime must make use of the local result by Wong [56].

2.3 Boundary conditions

This section provides a brief discussion of the boundary conditions which will be used

in conjunction with the properties of Killing spinors to characterise the Kerr and Kerr-

Newman spacetimes.
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2.3.1 Stationary asymptotically flat ends

The remainder of this chapter will be concerned with spacetimes admitting a stationary

asymptotically flat 4-end – see e.g. [56].

Definition 1. A stationary asymptotically flat 4-end in an electrovacuum spacetime

(M, g,F ) is an open submanifold M∞ ⊂ M diffeomorphic to I × (R3 \ BR) where

I ⊂ R is an open interval and BR is a closed ball of radius R. In the local coordinates

(t, xα) defined by the diffeomorphism the components gµν and Fµν of the metric g and

the Faraday tensor F satisfy

|gµν − ηµν |+ |r∂αgµν | ≤ Cr−1, (2.38a)

|Fµν |+ |r∂αFµν | ≤ C ′r−2, (2.38b)

∂tgµν = 0, (2.38c)

∂tFµν = 0, (2.38d)

where C and C ′ are positive constants, r ≡ (x1)2 + (x2)2 + (x3)2, and ηµν denote the

components of the Minkowski metric in Cartesian coordinates.

Remark 1. It follows from condition (2.38c) in Definition 1 that the stationary asymp-

totically flat end M∞ is endowed with a Killing vector ξa which takes the form ∂t –

a so-called time translation. Condition (2.38d) implies that the electromagnetic field

inherits the symmetry of the spacetime – that is LξF = 0, with Lξ the Lie derivative

along ξa.

Of particular interest will be those stationary asymptotically flat ends generated by

a Killing spinor :

Definition 2. A stationary asymptotically flat end M∞ ⊂ M in an electrovacuum

spacetime (M, g,F ) endowed with a Killing spinor κAB is said to be generated by a

Killing spinor if the spinor ξAA′ ≡ ∇BA′κAB is the spinorial counterpart of the Killing

vector ξa.
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Remark 2. Stationary spacetimes have a natural definition of mass in terms of the

Killing vector ξa that generates the isometry – the so-called Komar mass m defined as

m ≡ − 1

8π
lim
r→∞

∫
Sr

εabcd∇cξddSab

where Sr is the sphere of radius r centred at r = 0 and dSab is the bi-normal surface

element to Sr. Similarly, the total electromagnetic charge of the spacetime is defined via

the integral

q = − 1

4π
lim
r→∞

∫
Sr

FabdS
ab.

Remark 3. In the asymptotic region the components of the metric can be written in

the form

g00 = 1− 2m

r
+O(r−2),

g0α =
4εαβγS

βxγ

r3
+O(r−3),

gαβ = −δαβ +O(r−1),

where m is the Komar mass of ξa in the end M∞, εαβγ is the flat rank 3 totally anti-

symmetric tensor and Sβ denotes a 3-dimensional tensor with constant entries. The

components of the Faraday tensor are

F0α =
q

r2
+O(r−3),

Fαβ = O(r−3)

– see e.g. [53]. Therefore, to leading order any stationary asymptotically flat electrovac-

uum spacetime is asymptotically a Kerr-Newman spacetime.
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2.3.2 Killing spinor and Killing vector asymptotics

In general, the spinor ξAA′ obtained from a Killing spinor κAB using formula (2.5) is

not Hermitian. It is, however, well known that for the Kerr-Newman spacetime ξAA′ is

indeed the spinorial counterpart of a real Killing vector ξa – see e.g. [3]. More generally,

this observation applies to any electrovacuum spacetime with a stationary asymptotically

flat end. To see this, note the following:

Lemma 2. Let (M, g,F ) be a smooth electrovacuum spacetime with a stationary asymp-

totically flat end M∞, admitting a complex Killing vector field ξa. If ξa tends to a time

translation at infinity in M∞, then ξa is in fact a real vector in M∞.

Proof. The complex Killing vector can be written ξa = ξa1 + iξa2 for two real vectors

ξa1 , ξ
a
2 , which are also Killing vectors by linearity of the Killing vector equation. As a

time translation (∂t)
a is a real vector, we have ξa1 → (∂t)

a and ξa2 → 0 as r →∞ in the

asymptotically flat endM∞. However, it is well known that there are no non-trivial real

Killing vectors which vanish at infinity – see e.g. [12, 16]. Therefore, ξa2 = 0 on M∞,

and ξa = ξa1 is a real Killing vector.

Therefore, by assuming that the Killing vector ξa is asymptotically a time translation,

then the assumption requiring its spinorial equivalent ξAA′ to be a Hermitian spinor can

be dropped. In fact, it is possible to replace this condition on the Killing vector with an

asymptotic condition on the Killing spinor, as described in the following proposition:

Proposition 1. Let (M, g,F ) denote an electrovacuum spacetime with a stationary

asymptotically flat end M∞ generated by a Killing spinor κAB. Then the functions κ,

ϕ and ψ as defined by equations (2.3), (2.4) and (2.8) satisfy

κ =
2

3
r +O(1),

ϕ =
q

r2
+O(r−3),

ψ = −6m

r3
+O(r−4).



Chapter 2. Killing spinors as a characterisation of rotating black hole spacetimes 51

Moreover, one has that

ξ2 ≡ ξAA′ξAA
′

= 1 +O(r−1).

Proof. The analysis in [53] shows that to leading order the electrovacuum spacetime

(M, g,F ) coincides on M∞ with the Kerr-Newman spacetime. Thus, the expansions

for the fields κ, ϕ and ϕ must coincide to leading order with their expressions for the

Kerr-Newman spacetime – see [3].

2.4 Characterisations of the Kerr spacetime

The motivation behind the analysis in this chapter is the following theorem by M. Mars

– see [41]:

Theorem 2. Let (M, g) be a smooth, vacuum spacetime admitting a Killing vector ξa

with self-dual Killing form Hab. Let M satisfy:

(i) there exists a non-empty region M• ⊂M where

H2 ≡ HabHab 6= 0;

(ii) The self-dual Killing form and the Weyl tensor are related by

Cabcd = H

(
HabHcd −

1

3
H2Iabcd

)
(2.39)

where

Iabcd ≡
1

4
(gacgbd − gadgbc + iεabcd)

and H is a complex scalar function.
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Then there exist two complex constants l and c such that

H =
6

c− χ
, H2 = −l(c− χ)4.

If, in addition, c = 1 and l is real positive, then (M, g) is locally isometric to the Kerr

spacetime.

Remark 1. It is important to emphasise that in the above Theorem the existence of

the constants c and l and the functional dependence of H and H2 with respect to χ

are a consequence of the hypotheses of the theorem – this should be contrasted with

the electrovacuum case in which the existence of the analogous constants needs to be

assumed.

Remark 2. A particular case of Theorem 2 occurs when (M, g) is a priori assumed

to have an stationary asymptotically flat end M∞ with the Killing vector ξa tending

asymptotically to a time translation at infinity and such that the Komar mass associated

to ξa is non-zero. These assumptions ensure that H2 6= 0 in a region of the spacetime –

namely, in M∞. Therefore, only condition (2.39) needs to be verified to conclude that

H =
6

1− χ

and that the spacetime is locally isometric to the Kerr spacetime – see Theorem 2 in

[40].

Remark 3. The subsequent discussion will make use of the spinorial counterparts of

the conditions in the previous Theorem. In particular, notice that the content of the

combination HabHcd − 1
3H

2Iabcd can be encoded in terms of the spinor ηAB as defined

in equation (2.13) as

(
4ηABηCD −

2

3
ηEF η

EF (εADεBC + εACεBD)

)
εA′B′εC′D′ = 4η(ABηCD)εA′B′εC′D′
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where the last expression follows from a decomposition in irreducible terms. Thus,

condition (2.39) can be concisely re-expressed in terms of spinors as

ΨABCD = 2Hη(ABηCD). (2.40)

Finally, it is noticed that the condition H2 6= 0 can be re-expressed as

ηABη
AB 6= 0.

2.4.1 Killing spinors and the Mars characterisation

This section will analyse the extent to which existence of a Killing spinor on a vacuum

spacetime implies the hypotheses of the characterisation of Kerr given in Theorem 2.

The assumptions to be made in the remainder of this section shall here be explicitly

stated for completeness:

Assumption 1. Let (M, g) be a smooth vacuum spacetime and let K ⊂M such that:

(i) on K there exists an algebraically general Killing spinor κAB;

(ii) the spinor ξAA′ ≡ ∇BA′κAB is on K the spinorial counterpart of a real Killing

spinor ξa – i.e. ξAA′ is Hermitian.

Under the above assumptions, it follows from combining the basis expansion for

ΨABCD and ηAB, equations (2.4) and (2.15), respectively, that

ΨABCD =
16

κ2ψ
η(ABηCD).

Thus, hypothesis (ii) of Theorem 2 is satisfied with

H =
8

κ2ψ

– cf. equation (2.40). Using the expression for the Ernst potential predicted by the
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theory of Killing spinors, equation (2.28), it follows that

H =
6

c− χ

which is precisely the form for H predicted by Theorem 2. From this expression one can

further conclude that

H2 = −M

3

(
4

3M

)3

(c− χ)4. (2.41)

This, again, is the form predicted by Theorem 2.

The above observations allow the formulation of the following Killing spinor version

of Theorem 2:

Proposition 2. Let (M, g) denote a smooth vacuum spacetime endowed with a Killing

spinor κAB with κABκ
AB 6= 0 such that the spinor ξAA′ ≡ ∇BA′κAB is Hermitian. Then

there exist two complex constants l and c such that

H2 = −l(c− χ)4. (2.42)

If, in addition, c = 1 and l is real positive, then (M, g) is locally isometric to the Kerr

spacetime.

2.4.1.1 A characterisation using asymptotic flatness

Proposition 2 requires the setting of two complex constants by hand, in order to recover

the Kerr spacetime. It is possible to avoid this by introducing a further, physically

reasonable assumption - that the set K ⊂ M contains a stationary asymptotically flat

end with the Killing spinor κAB generating the time translation Killing vector.

From Proposition 1 it readily follows that

(c− χ)4 =
16m4

r4
+O(r−5).
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Similarly, one has, using equation (2.15), that

H2 = −4η2 = −4m2

r4
+O(r−5).

Thus, by consistency with the required asymptotic behaviour of the Ernst potential, one

has to set c = 1 and the constant l in Proposition 2 is given by l = 1/4m2.

We can summarise the discussion of the previous section in the following:

Theorem 3. Let (M, g) be a smooth vacuum spacetime containing a stationary asymp-

totically flat endM∞ generated by a Killing spinor κAB. Let the Komar mass associated

to the Killing vector ξAA′ = ∇BA′κAB in M∞ be non-zero. Then, (M, g) is locally iso-

metric to the Kerr spacetime.

Remark. As observed in [3] the requirement on the non-vanishing of the Komar mass

can be replaced by an assumption on the existence of a horizon.

2.5 Characterisations of the Kerr-Newman spacetime

We now move on to discuss characterisations of the Kerr-Newman spacetime through

Killing spinors. Our starting point is the following result – see [56]:

Theorem 4. Let (M, g,F ) be a smooth, electrovacuum spacetime admitting a real

Killing vector ξa. Assume further that ξa is timelike somewhere in M and that Fab

is non-null on M (i.e. F2 ≡ FabFab 6= 0) and that it inherits the symmetry of the

spacetime – i.e.

LξFab = 0. (2.43)

Assume, furthermore, that there exists a complex scalar P , a normalisation for ς and a
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complex constant c1 such that:

P−4 = −c21F2, (2.44a)

Hab = −1

2
ς̄Fab, (2.44b)

Cabcd = 3P

(
1

2
FabHcd +

1

2
FabHcd −

1

3
IabcdFefHef

)
. (2.44c)

Then there exist complex constants c2 and c3 such that:

P =
2

c2 − ς
, (2.45a)

4ξ2 − |ς|2 = c3. (2.45b)

If, further, c2 is such that c1c̄2 is real and c3 is such that |c2|2 + c3 = 4, then (M, g,F )

is locally isometric to a Kerr-Newman spacetime.

Remark 1. As in Section 2.4, this section will make use of a reformulation of the

conditions in Theorem 4 in spinorial formalism. A direct computation shows that (2.44a)

can be rewritten as

P−4 = −8c21φABφ
AB.

Similarly, condition (2.44b) can be expressed in terms of the spinors ηAB and ϕAB as

ηAB = −1

2
ς̄φAB,

while, finally, equation (2.44c) is equivalent to

ΨABCD = 6Pη(ABφCD).

2.5.1 Killing spinors and Wong’s characterisation

This section will investigate some further consequences of the existence of Killing spinors

on electrovacuum spacetimes. Again, the assumptions to be made in the remainder of
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this section shall be explicitly stated here for completeness:

Assumption 2. Let (M, g) be a smooth electrovacuum spacetime and let K ⊂M such

that:

(i) on K there exists an algebraically general Killing spinor κAB;

(ii) the spinor ξAA′ ≡ ∇BA′κAB is on K the spinorial counterpart of a real Killing

spinor ξa – i.e. ξAA′ is Hermitian;

(iii) the Killing spinor κAB and the Maxwell spinor φAB satisfy the alignment condition

κ(A
QφB)Q = 0 – that is, they are proportional.

As already discussed in Section 2.2.5.3, under the above assumptions it follows that

LξφAB = 0 which, in turn, implies that LξFab = 0. Thus, the electromagnetic field

inherits the symmetry generated by the Killing spinor κAB.

From the discussion in Sections 2.2.1 and 2.2.4 it follows that

ΨABCD = ψo(AoBιCιD), η(ABφCD) = ηϕo(AoBιCιD).

Thus, the spinorial version of condition (2.44c) in Theorem 4 is satisfied with a propor-

tionality function P given by

P =
2

3κϕ
.

Now, making use of expressions (2.31), (2.32) and (2.34) to rewrite P in terms of the

electromagnetic Ernst potential, it follows that

P =
2

c2 − ς
, c2 ≡ c′ − M̄′

2Q̄
.

Thus, under the Assumptions 2, hypothesis (2.44c) and conclusion (2.45a) in Theorem

4 are satisfied.

Moreover, from the discussion in Section 2.2.5.3 it follows that the spinors ηAB and
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φAB are proportional to each other with a proportionality function ς given by

ς̄ = −κψ
2ϕ

.

The calculations of Section 2.2.5, cf. equation (2.30) in particular, show that ς satisfies

the properties to be expected from the electromagnetic Ernst potential. Therefore, by

setting the constant c′ in the definition of ς given by (2.31) to zero (and thereby fixing

the normalisation of the potential), condition (2.44b) is satisfied. A similar remark holds

for condition (2.44a) with the constant c1 given by

c21 =
81

64
Q2.

In the presence of a Killing spinor, the norm ξ2 ≡ ξaξa of the associated Killing vector

is related to the electromagnetic form ς. To see this consider

∇AA′ξ2 = 2ξBB
′∇AA′ξBB′

= −2ηABξ
B
A′ − 2η̄A′B′ξA

B′

where in the second line it has been used that

∇AA′ξBB′ = ηABεA′B′ + η̄A′B′εAB.

As the spinors ηAB and φAB are proportional to each other, one can write

∇AA′ξ2 = ς̄ξAB′φAB + ςξB
A′ φ̄A′B′

=
1

4

(
ς̄∇BB′ς + ς∇BB′ ς̄

)
=

1

4
∇BB′ |ς|2.
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Therefore, locally there exists a constant c3 such that

4ξ2 − |ς|2 = c3.

Thus, conclusion (2.45b) in Theorem 4 is also a consequence of the existence of a Killing

spinor.

The discussion of this section can be summarised with the following Killing spinor

version of Theorem 4:

Proposition 3. Let (M, g,F ) denote a smooth electrovacuum spacetime satisfying the

matter alignment condition, endowed with a Killing spinor κAB with κABκ
AB 6= 0 such

that the spinor ξAA′ ≡ ∇BA′κAB is Hermitian. Then there exist two constants c2 and c3

such that

(c2 − ς)4 = −
(

9

8
Q

)2

F2, 4ξ2 − |ς|2 = c3.

If, further, c2 is such that c̄2Q is real and c3 is such that |c2|2 + c3 = 4, then (M, g,F )

is locally isometric to a Kerr-Newman spacetime.

2.5.1.1 A characterisation using asymptotic flatness

As in Proposition 2, the above result relies on the setting of complex constants by

hand; to avoid this, assume that the domain K ⊂ M considered in the Assumptions 3

contains an stationary asymptotic flat end with the Killing spinor κAB generating the

time translation Killing vector. We use this further assumption to determine the values

of the constants in Proposition 3.

Combining the asymptotic expansions of Proposition 1 with the relation (2.32) gives

Q =
4

9
q ∈ R.
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Similarly, using equation (2.33) it follows that

M′ = −16

9
m.

A further computation using equation (2.31) and (2.32), respectively, shows that

(c2 − ς)4 =

(
c2 −

2m

q
+O(r−1)

)4

,

(
9

8
Q

)2

F2 = −q
4

r4
+O(r−5).

Therefore, for consistency, one has to set

c2 =
2m

q

and we must have c̄2Q ∈ R. From the previous discussion it follows that ς = 2m/q +

O(r−1) so that, together with ξ2 = 1 + O(r−1), we can conclude that c3 as defined by

equation (2.45b) is given by

c3 = 4

(
1− m2

q2

)
.

Accordingly one has that |c2|2 + c3 = 4 as required.

The discussion of the previous paragraphs can be summarised in the following:

Theorem 5. Let (M, g,F ) be a smooth, electrovacuum spacetime satisfying the matter

alignment condition, with a stationary asymptotically flat endM∞ generated by a Killing

spinor κAB. Let both the Komar mass associated to the Killing vector ξAA′ = ∇BA′κAB

and the total electromagnetic charge in M∞ be non-zero. Then (M, g,F ) is locally

isometric to the Kerr-Newman spacetime.

2.6 Applications

The advantage of the Killing spinor characterisation of the Kerr and Kerr-Newman solu-

tions is that the existence of such a spinor is a geometric condition, with only reasonable

asymptotic conditions needing to be further assumed for the results presented above.
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This geometric condition can be converted into initial data for a spacelike Cauchy sur-

face, in a way compatible with the constraint equations. This can then be exploited to

construct a geometric invariant for the initial data set, which parametrises the deviation

of the resulting global development of the initial data set from the exact Kerr or Kerr-

Newman solution. Various versions of this construction analysis have been considered in

[4–7] for the vacuum case. A generalisation of these constructions to the electrovacuum

case will be given in the next chapter.

In this chapter, we have considered only vacuum and electrovacuum spacetimes; it

may be possible to extend these results to spacetimes with other matter contents. For

example, in [42] the authors extend the results of [41] to spacetimes with non-zero cosmo-

logical constant; it is possible that the necessary conditions of these generalised results

can be replaced with the existence of a Killing spinor, or a conformal Killing spinor.

Finally, the results of this chapter suggest that the characterisations of the Kerr-

Newman spacetime given by Wong in [56] can be improved to an optimal theorem in

which condition (2.44a) in Theorem 4 is a consequence of the other hypotheses. An opti-

mal result of this type is desirable if one is to attempt to use this type of characterisation

to construct an alternative approach to the uniqueness of black holes.



Chapter 3

A geometric invariant

characterising Kerr-Newman

initial data

The contents of this chapter reproduce the arguments given in the paper [19].

3.1 Introduction

As we have seen, the Kerr-Newman solution can be characterised using the existence

of a solution to the Killing spinor equation in a natural way. A key condition in the

generalisation of the vacuum result to the electrovacuum case was the matter alignment

condition - in other words, the assumption that the Maxwell spinor and Killing spinor

are proportional. Although this condition restricts the form of the matter content of

the spacetime, it has the reasonable physical interpretation of requiring the matter fields

to ‘inherit’ the symmetry described by the Killing spinor. The most attractive feature

of Theorem 5 is that all of the assumptions are either physically motivated asymptotic

conditions, or requirements that the spacetime respect this ‘hidden’ symmetry.

62
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Once the motivation for a characterisation of the Kerr-Newman spacetime in terms

of Killing spinors has been established, it is useful to investigate how the existence of

such a spinor can be expressed in terms of initial data. The initial value problem in

General Relativity has played a crucial role in the systematic analysis of the properties

of generic solutions to the Einstein field equations – see e.g. [25, 50, 51]. It also provides

the framework necessary for numerical simulations of spacetimes to be performed – see

e.g. [1, 9].

As described in Chapter 1, symmetries of a spacetime can be represented as condi-

tions on an initial hypersurface via the KID equations – see [10]. These equations form a

overdetermined system, so for arbitrary initial data sets satisfying the vacuum constraint

equations, solutions will not necessarily exist. This corresponds to the observation that

generic solutions to the vacuum Einstein equations do not admit any spacetime Killing

vectors (see [11]). An analogous construction can, in principle, be performed for Killing

spinors. This analysis has been performed for the vacuum case giving explicitly the con-

ditions relating the Killing spinor candidate and the Weyl curvature of the spacetime –

see [28] and also [6]. These conditions are, like the KID equations, an overdetermined

system and so do not necessarily admit a solution for an arbitrary initial surface. How-

ever, in [5, 6] it has been shown that given an asymptotically Euclidean hypersurface it

is always possible to construct a Killing spinor candidate which, whenever there exists

a Killing spinor in the development, coincides with the restriction of the Killing spinor

to the initial hypersurface. This approximate Killing spinor is obtained by solving a

linear second order elliptic equation which is the Euler-Lagrange equation of a certain

functional over S. The approximate Killing spinor can be used to construct a geometric

invariant which in some way parametrises the deviation of the initial data set from Kerr

initial data. Variants of the basic construction in [6] have been given in [4, 7].

The purpose of this chapter is to extend the analysis of [6] to the electrovacuum case.

In doing so, we rely on the characterisation of the Kerr-Newman spacetime given in [18]

which, in turn, builds upon the characterisation provided in [41] for the vacuum case
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and [56] for the electrovacuum case. As a result of our analysis we find that the Killing

spinor initial data equations remain largely unchanged, with extra conditions ensuring

that the electromagnetic content of the spacetime inherits the symmetry of the Killing

spinor. These electrovacuum Killing spinor equations, together with an appropriate

approximate Killing spinor, are used to construct an invariant expressed in terms of

suitable integrals over the hypersurface S whose vanishing characterises in a necessary

and sufficient manner initial data for the Kerr-Newman spacetime. Our main result, in

this respect, is given in Theorem 10.

Overview of the chapter

Section 3.2 provides a brief recap of the theory of Killing spinors in electrovacuum space-

times, and defines some of the relevant quantities for this chapter. Section 3.3 discusses

the evolution equations governing the propagation of the Killing spinor equation in an

electrovacuum spacetime. The main conclusion from this analysis is that the resulting

second-order system is linear and homogeneous in a certain set of zero-quantities and

their first derivatives. The trivial initial data for these equations, sufficient to guarantee

the existence of a unique solution, give rise to conditions implying the existence of a

Killing spinor in the development of an initial hypersurface. In Section 3.4 the space-

spinor formalism is used to re-express these conditions in terms of quantities defined on

the initial hypersurface. In addition, in this section the interdependence between the var-

ious conditions is analysed and a minimal set of Killing spinor data equations is obtained.

Section 3.5 introduces the notion of approximate Killing spinors for electrovacuum initial

data sets and discusses some basic ellipticity properties of the associated approximate

Killing spinor equation. Section 3.6 discusses the construction of a solution to the approx-

imate Killing spinor equation for a class of asymptotically Euclidean manifolds. Finally,

Section 3.7 brings together the analyses in the various section to construct a geometric

invariant characterising initial data for the Kerr-Newman spacetime. The main result of

this chapter is given in Theorem 10.
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Recap of notation and conventions

Let (M, g,F ) denote an electrovacuum spacetime, i.e. a solution to the Einstein-Maxwell

field equations. The signature of the metric in this chapter will again be (+,−,−,−),

and we will continue to use the spinorial conventions of [45]. The lowercase Latin let-

ters a, b, c, . . . are used as abstract spacetime tensor indices while the uppercase letters

A, B, C, . . . will serve as abstract spinor indices. The Greek letters µ, ν, λ, . . . will be

used as spacetime coordinate indices while α, β, γ, . . . will serve as spatial coordinate

indices. Finally A, B, C, . . . will be used as spinorial frame indices.

The conventions for the spinorial curvature tensors will be as described in (1.4), and

the expression for the once-contracted second derivative of a spinor given in (1.8) will

be used systematically.

3.2 Killing spinors in electrovacuum spacetimes

3.2.1 The Einstein-Maxwell equations

To recap from a previous chapter, the Einstein-Maxwell equations are given by

ΦABA′B′ = 2φABφ̄A′B′ , Λ = 0,

∇AA′φAB = 0.

Given a Maxwell spinor in an electrovacuum spacetime, applying the derivative ∇A′C to

the Maxwell equation in the form ∇AA′φAB = 0 gives, after some standard manipula-

tions, the following wave equation for the Maxwell spinor:

�φAB = 2ΨABCDφ
CD. (3.1)
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3.2.2 Killing spinors

Recall that a Killing spinor κAB = κ(AB) in an electrovacuum spacetime (M, g,F ) is a

solution to the Killing spinor equation

∇A′(AκBC) = 0. (3.2)

In this chapter, a prominent role will played by the integrability conditions implied

by the Killing spinor equation. More precisely, one has the following:

Lemma 3. Let (M, g,F ) denote an electrovacuum spacetime endowed with a Killing

spinor κAB. Then κAB satisfies the integrability conditions:

κ(A
QΨBCD)Q = 0, (3.3a)

�κAB + ΨABCDκ
CD = 0. (3.3b)

Proof. The integrability conditions follow from applying the derivative ∇DA
′

to the

Killing spinor equation (3.2), then using the identity (1.8) together with the box com-

mutators (1.4) and finally decomposing the resulting expression into its irreducible terms

– the only non-trivial trace yields equation (3.3b) while the completely symmetric part

gives equation (3.3a).

Remark 6. Observe that although every solution to the Killing spinor equation (3.2)

satisfies the wave equation (3.3b), the converse is not true. In what follows, a symmetric

spinor satisfying equation (3.3b), but not necessarily equation (3.2), will be called a

Killing spinor candidate. This notion will play a central role in our subsequent analysis

– in particular, we will be concerned with the question of the further conditions that

need to be imposed on a Killing spinor candidate to be a true Killing spinor.

In the previous chapter, the Killing spinor was used to construct a (complex) vec-

tor ξAA′ via equation (2.5). In vacuum, this vector is by construction a Killing vector;
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however, this is only true in electrovacuum spacetimes if the matter alignment condition

(given in equation (2.7)) holds. If this condition is satisfied, then the Killing spinor

κAB and Maxwell spinor φAB are necessarily proportional - in other words, the elec-

tromagnetic fields in the spacetime are ‘aligned’ with the symmetry represented by the

Killing spinor. Of course, the vector ξAA′ can be constructed from any symmetric can-

didate spinor κAB via (2.5), even if κAB is not a Killing spinor; in this case, ξAA′ will be

referred to as the Killing vector candidate associated to κAB.

3.2.3 Zero-quantities

From here onwards, the calculations performed will make use of xAct, a suite of ten-

sor computer algebra packages for Mathematica. Although the calculations could be

straightforwardly carried out by hand, the size and complexity of some expressions makes

this unwieldy; therefore, computer algebra packages provide significant time savings, and

allow one to focus on the structure of and relationships between expressions rather than

on their explicit composition. Some common operations which can be performed include:

• Commutation of derivatives (including covariant, Sen and normal)

• Decomposition of spinorial expressions into irreducible parts; this operation is one

of the most useful ways of simplifying a long expression, as many of the irreducible

parts trivially or can easily be shown to vanish

• Substitution of one equation into another - for example, the elimination of �κAB

from wave equation computations using equation (3.3b)

• Reduction of second-order derivative terms to curvature, for example via the box

commutators (1.4).

Some of the code used to perform these operations could be recycled from the analysis

of the vacuum case, given in [6]; however, these rules had to updated and complemented

with additional rules to take into account the non-vanishing matter content of electrovac-
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uum spacetimes. The precise order in which these rules are applied is usually motivated

by the form of the final expression that is wished to be obtained, mirroring the order

that would be used were the calculations being done by hand. The website for the suite,

including downloads, documentation and updates, can be found at www.xact.es [43].

In order to investigate the consequences of the Killing spinor equation (3.2) in a more

systematic manner it is convenient to introduce the following zero-quantities:

HA′ABC ≡ 3∇A′(AκBC), (3.4a)

SAA′BB′ ≡ ∇AA′ξBB′ +∇BB′ξAA′ , (3.4b)

ΘAB ≡ 2κ(A
QφB)Q. (3.4c)

Observe that if HA′ABC = 0 then κAB is a Killing spinor. Similarly, if SAA′BB′ = 0 then

ξAA′ is the spinor counterpart of a Killing vector, while if ΘAB = 0 then the matter

alignment condition (2.7) holds.

The decomposition in irreducible components of ∇AA′κBC can be expressed in terms

of HA′ABC and ξAA′ as

∇AA′κBC =
1

3
HA′ABC −

2

3
εA(BξC)A′ . (3.5)

Similarly, a further computation shows that for ξAA′ as given by equation (2.5) one has

the decomposition

∇AA′ξBB′ = η̄A′B′εAB + ηABεA′B′ +
1

2
SAA′BB′ (3.6)

where

ηAB ≡
1

2
∇AQ′ξBQ

′

is the spinorial equivalent of the self-dual Killing form defined in (2.10).

www.xact.es
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Remark 7. From equation (2.5) it readily follows by contraction that

∇AA′ξAA′ = 0

independently of whether the alignment condition (2.7) holds or not – i.e. the Killing vec-

tor candidate ξAA′ defined by equation (2.5) is always divergence free. This observation,

in turn, implies that

SAA′
AA′ = 0,

so that one has the symmetry

SAA′BB′ = S(AB)(A′B′). (3.7)

Remark 8. The zero-quantities introduced in equations (3.4a)-(3.4c) are a helpful book-

keeping device. In particular, calculations analogous to that of the proof of Lemma 3

show that

∇(A
A′H|A′|BCD) = −6ΨQ(ABCκD)

Q,

∇AA′HA′ABC = 2
(
�κBC + ΨBCPQκ

PQ
)
.

Therefore, the integrability conditions of Lemma 3 can be written, alternatively, as

∇(A
A′H|A′|BCD) = 0, ∇AA′HA′ABC = 0.

In particular, observe that if κAB is a Killing spinor candidate, then the zero quantity

HA′ABC constructed from κAB is divergence free.
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3.3 The Killing spinor evolution system in electrovacuum

spacetimes

In this section we systematically investigate the interrelations between the zero-quantities

HA′ABC , SAA′BB′ and ΘAB. The ultimate objective of this analysis is to obtain a sys-

tem of linear, homogeneous wave equations for the zero-quantities; it will follow that

the global solution to this system with vanishing zero and first order derivatives on an

initial hypersurface S is unique and also vanishing, giving rise to a Killing spinor on the

development of the initial data.

3.3.1 A wave equation for ξAA′

Given a Killing spinor candidate κAB, the wave equation (3.3b) naturally implies a wave

equation for the Killing vector candidate ξAA′ . First, note the following alternative

expression for the field SAA′BB′ :

Lemma 4. Let κAB denote a symmetric spinor field in an electrovacuum (M, g,F ).

Then, one has that

SAA′BB′ = 6φ̄A′B′ΘAB −
1

2
∇PA′HB′AB

P − 1

2
∇PB′HA′AB

P . (3.8)

Proof. To obtain the identity, start by substituting the expression ξAA′ = ∇QA′κQA into

the definition of SAA′BB′ , equation (3.4b). Then, commute covariant derivatives using

the commutators (1.4) and make use of the decompositions of ∇AA′κBC , ∇AA′ξBB′ and

SAA′BB′ given by equations (3.5), (3.6) and (3.7), respectively, to simplify.

Remark 9. Observe that in the above result the spinor κAB is not assumed to be a

Killing spinor candidate.

The latter is used, in turn, to obtain a wave equation for the Killing vector candidate:

Lemma 5. Let κAB denote a Killing spinor candidate in an electrovacuum spacetime
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(M, g,F ). Then the Killing vector candidate ξAA′ ≡ ∇QA′κAQ satisfies the wave equa-

tion

�ξAA′ = −2ξPP
′
ΦAPA′P ′+ΦPQ

A′
P ′HP ′APQ− ΨAPQDHA′

PQD+6φ̄A′
P ′∇PP ′ΘA

P . (3.9)

Proof. One makes use of the definition of SAA′BB′ and the identity (3.8) to write

∇AA′∇AA′ξBB′ +∇AA
′∇BB′ξAA′ = 6∇AA′

(
ΘABφ̄A′B′

)
− 1

2
∇AA′∇CA′HB′AB

C

−1

2
∇AA′∇CB′HA′AB

C .

The above expression can be simplified using the Maxwell equations. Moreover, commut-

ing covariant derivatives in the terms ∇AA′∇CA′HB′AB
C and ∇AA′∇CB′HA′AB

C gives:

�ξAA′ = −2ξPP
′
ΦAPA′P ′ + ΦPQ

A′
P ′HP ′APQ − ΨAPQDHA′

PQD + 6φ̄A′
P ′∇PP ′ΘA

P

−∇AA′∇PP ′ξPP
′ − 1

2
∇QA′∇PP ′HP ′

A
PQ.

Finally, using ∇AA′HA′ABC = 0 (see Remark 8) and the fact that ξAA′ is a Killing vector

candidate (see Remark 7), the result follows.

Remark 10. Important for the subsequent discussion is that the wave equation (3.9)

takes, in tensorial terms, the form

�ξa = −2Φabξ
b + Ja (3.10)

where Ja is defined in spinorial terms by

JAA′ ≡ ΦPQ
A′
P ′HP ′APQ − ΨAPQDHA′

PQD + 6φ̄A′
P ′∇PP ′ΘA

P .

In terms of the zero-quantity ζAA′ to be introduced in equation (3.12) one has

JAA′ ≡ ΦPQ
A′
P ′HP ′APQ − ΨAPQDHA′

PQD − 6φ̄A′
P ′ζAP ′ .
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Therefore, JAA′ is a linear and homogeneous expression of zero-quantities and does not

involve their derivatives. This is confirmed by the fact that setting Ja = 0 in the

above equation yields the familiar wave equation for a Killing vector in a spacetime with

non-trivial matter content. Therefore, Ja can be thought of as a vector measuring the

obstruction of ξa to being a Killing vector.

3.3.2 A wave equation for HA′ABC

It is possible to construct a wave equation for the zero quantity HA′ABC :

Lemma 6. Let κAB denote a Killing spinor candidate in an electrovacuum spacetime

(M, g,F ). Then the zero-quantity HA′ABC satisfies the wave equation

�HA′BCD = 2ΨCDAFHA′B
AF + 2ΨBDAFHA′C

AF + 4φD
Aφ̄A′

B′HB′BCA

− 12φ̄A′
B′∇DB′ΘBC − 2∇DB

′
S(BC)(A′B′). (3.11)

Proof. Consider, again, the identity (3.8) in the form

∇AB′HA′BC
A = 6φ̄A′B′ΘBC − S(BC)(A′B′).

Applying the derivative ∇DB
′

to the above expression one readily finds that

∇DB
′∇AB′HA′BC

A = 6(ΘBC∇DB
′
φ̄A′B′ + φ̄A′B′∇DB

′
ΘBC)−∇DB

′
S(BC)(A′B′)).

Using the identity (1.8) and the box commutators (1.4) one obtains, after simplifying

using the Maxwell equations, the desired equation.

Remark 11. Observe that the right hand side of the wave equation (3.11) is a linear

and homogeneous expression in the zero-quantity HA′ABC and the first order derivatives

of ΘAB and SAA′BB′ .
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3.3.3 A wave equation for ΘAB

In order to compute a wave equation for the zero-quantity associated to the matter

alignment condition it is convenient to introduce a further zero-quantity:

ζAA′ ≡ ∇QA′ΘAQ. (3.12)

Clearly, if the matter alignment condition (2.7) is satisfied, then ζAA′ = 0. The reason

for introducing this further field will become clear later. Using the above definition, it

follows that:

Lemma 7. Let κAB denote a symmetric spinor field in an electrovacuum spacetime

(M, g,F ). Then, one has that

�ΘAB = 2ΨABPQΘPQ − 2∇BA
′
ζAA′ . (3.13)

Proof. The wave equation follows from applying the derivative ∇BA
′

to the definition of

ζAA′ and using the identity (1.8) together with the box commutators (1.4).

Remark 12. A direct computation using the definitions of ΘAB and ζAA′ together with

the expression for the irreducible decomposition of ∇AA′κBC given by equation (3.5) and

the Maxwell equations gives that

ζAA′ = −∇A′(AφBC)κ
BC +

4

3
ξBA′φAB +

1

3
HA′ABCφ

BC . (3.14)

Remark 13. It follows directly from equation (3.13) that

∇AA′ζAA′ = 0.

Alternatively, this property can be verified through a direct computation using the iden-

tity (3.14).

As the right hand side of equation (3.13) is a linear and homogeneous expression in
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ΘAB and a first order derivative of ζAA′ , to construct a closed system of wave equations

one needs to construct a wave equation for ζAA′ . The required expression follows from

an involved computation – as it can be seen from the proof of the following lemma:

Lemma 8. Let κAB denote a symmetric spinor field in an electrovacuum (M, g,F ).

Then, one has that

�ζAA′ = 4ζDB
′
φADφ̄A′B′ +

2

3
φDBΨDBCFHA′A

CF − 2

3
φDBΨABCFHA′D

CF

− 4

3
φA

DφBC φ̄A′
B′HB′DBC −

2

3
HB′DBC∇AB′φDA′BC

− 2

3
HA′

DBC∇AB′φDB
′
BC +

2

3
φDB

′BC∇AB′HA′DBC

+
2

3
φDA′

BC∇AB′HB′
DBC −

4

3
φDB∇AB

′
S(BD)(A′B′)

− 4φDBφ̄A′
B′∇BB′ΘAD −

2

3
φDB∇BB

′
S(AD)(A′B′)

+
2

3
∇AB

′
φDB∇CB′HA′DB

C − 4

3
∇AB

′
φDBS(BD)(A′B′). (3.15)

where φAA′BC ≡ ∇AA′φBC .

Proof. Consider the identity (3.14) and apply the derivative ∇AB′ to obtain

∇AB′ζAA′ = −κBC∇AB′∇AA′φBC +
1

3
(HA′ABC∇AB′φBC + φBC∇AB′HA′ABC)

−∇AA′φBC∇AB′κBC +
4

3
(φAB∇AB′ξBA′ + ξBA′∇AB′φAB).

Some further simplifications give

∇AB′ζAA′ =
1

3
∇AB′φBCHA′ABC +

1

3
∇AA′φBCHB′ABC −

1

3
φAB∇CB′HA′AB

C

+
2

3
φABS(AB)(A′B′).

To obtain the required wave equation, apply ∇DB
′

to the above expression and make

use of the decomposition (1.8) on the terms

1

3
∇DB

′∇AB′φBCHA′ABC , ∇DB
′∇AB′ζAA′ , −1

3
φAB∇DB

′∇CB′HA′AB
C .
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Finally, substitution of the wave equations for φAB and HA′ABCD, equations (3.1) and

(3.11), yields the required expression homogeneous in zero-quantities.

3.3.4 A wave equation for SAA′BB′

The discussion of the wave equation for the spinorial field SAA′BB′ is best carried out

in tensorial notation. Accordingly, let Sab denote the tensorial counterpart of the (not

necessarily Hermitian) spinor SAA′BB′ . Key to this computation is the wave equation

for the Killing vector candidate ξa, equation (3.10).

Lemma 9. Let κAB denote a Killing spinor candidate in an electrovacuum spacetime

(M, g,F ). Then the zero-quantity Sab satisfies the wave equation

�Sab = −2LξTab + 2Tb
cSac + 2Ta

cSbc − T cdScdgab − TabScc

− 2CacbdS
cd +∇aJb +∇bJa (3.16)

where LξTab denotes the Lie derivative of the energy-momentum of the Faraday tensor.

Proof. The required expression follows from applying � = ∇a∇a to

Sab = ∇aξb +∇bξa,

commuting covariant derivatives, using the wave equation (3.10), the Einstein equation

Rab = Tab,

the contracted Bianchi identity

∇aCabcd = ∇[cTd]b
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and the relation

∇aξb =
1

2
Sab +∇[aξb].

A straightforward computation shows that the Lie derivative of the electromagnetic

energy-momentum tensor can be expressed in terms of the Lie derivative of the Faraday

tensor and the zero-quantity Sab in the following way:

LξTab = −1

4
FcdF

cdSab − FacFbdScd +
1

2
Fc

fF cdgabSdf

+ Fb
cLξFac + Fa

cLξFbc −
1

2
F cdgabLξFcd.

Furthermore, the Lie derivative of the Faraday tensor can be expressed in terms of the

Lie derivative of the Maxwell spinor as

LξFAA′BB′ =

(
LξφAB −

1

2
SAC′BD′ φ̄

C′D′
)
εA′B′ + complex conjugate,

where the Lie derivative of the Maxwell spinor is defined by

LξφAB ≡ ξCC
′∇CC′φAB + φC(A∇B)C′ξ

CC′ (3.17)

– see Section 6.6 in [46]. This expression can be written in terms of zero quantities by

using the wave equations for the Killing and Maxwell spinors, the Maxwell equations

and the identity

κD(AΨB)DEFφ
EF =

1

2
ΨABCDΘCD +

1

3
φEF∇(A|

A′HA′|BEF )

along with the wave equations for the Killing and Maxwell spinors and the Maxwell

equations, (3.3b) and (3.9), so as to obtain

LξφAB = −3

2
∇(A

A′ζB)A′ +HA′CD(A∇B)
A′φCD − φCD∇(A|

A′HA′|BCD).
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From this discussion, the result follows:

Lemma 10. Let κAB denote a Killing spinor candidate in an electrovacuum spacetime

(M, g,F ). Then the Lie derivative LξTab can be expressed as a linear and homogeneous

expression in the zero-quantities

SAA′BB′ , ζAA′ , HA′ABC

and their first order derivatives.

Remark 14. In the context of the present discussion the object LξφAB, as defined in

(3.17), must be regarded as a convenient shorthand for a complicated expression. It

is only consistent with the usual notion of Lie derivative of tensor fields if ξAA
′

is the

spinorial counterpart of a conformal Killing vector ξa – see [46], Section 6.6, for further

discussion on this point.

3.3.5 Summary

Collecting the results of the current section gives the following result:

Proposition 4. Let κAB denote a Killing spinor candidate in an electrovacuum space-

time (M, g,F ). Then the zero-quantities

HA′ABC , ΘAB, ζAA′ , SAA′BB′

satisfy a system of wave equations, consisting of equations (3.11), (3.13), (3.15) and

(3.16), which are linear and homogeneous in the above zero-quantities and their first

order derivatives.

The above proposition ensures that the system of equations given in (3.11), (3.13),

(3.15) and (3.16) satisfy the conditions of Theorem 1 in [28], which guarantees the

existence of a unique solution in a neighbourhood of the hypersurface S, given arbitrary

initial data. For the remainder of this chapter, when the existence of a unique solution
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to a system of wave equations is claimed, it is this result which is being used, with the

understanding that the specific system satisfies the necessary assumptions. In particular,

applying this theorem to the system obtained here gives rise to the following:

Theorem 6. Let κAB denote a Killing spinor candidate in an electrovacuum spacetime

(M, g,F ) and let S denote a Cauchy hypersurface of (M, g,F ). The spinor κAB is an

actual Killing spinor if and only if on S one has that

HA′ABC |S = 0, ∇EE′HA′ABC |S = 0 (3.18a)

SAA′BB′ |S = 0, ∇EE′SAA′BB′ |S = 0 (3.18b)

ΘAB|S = 0, ∇EE′ΘAB|S = 0 (3.18c)

ζAA′ |S = 0, ∇EE′ζAA′ |S = 0. (3.18d)

Proof. The initial data for the homogeneous system of wave equations for the fields

HA′ABC , ΘAB, ζAA′ and SAA′BB′ given by equations (3.11), (3.13), (3.15) and (3.16)

consists of the values of these fields and their normal derivatives on the Cauchy surface

S. As this system of wave equations satisfies the conditions of Theorem 1 in [28], the

unique solution to these equations with vanishing initial data is given by

HA′ABC = 0, ΘAB = 0, ζAA′ = 0, SAA′BB′ = 0.

Thus, if this is the case, the spinor κAB satisfies the Killing equation onM and, accord-

ingly, it is a Killing spinor. Conversely, given a Killing spinor κAB overM, its restriction

to S satisfies the conditions (3.18a)-(3.18d).

Remark 15. As the spinorial zero-quantities HA′ABC , ΘAB, ζAA′ and SAA′BB′ can be

expressed in terms of the spinor κAB, it follows that the conditions (3.18a)-(3.18d) are,

in fact, conditions on κAB, and its (spacetime) covariant derivatives up to third order.

In the next section it will be shown how these conditions can be expressed in terms of

objects defined on the hypersurface S.
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3.4 The Killing spinor data equations

The purpose of this section is to show how the conditions (3.18a)-(3.18d) of Theorem 6

can be re-expressed as conditions which are defined on the hypersurface S. To this end,

the space-spinor formalism outlined in Chapter 1 will be used.

3.4.1 Basic decompositions

First, the irreducible decompositions of the various spinorial fields and equations required

for the subsequent analysis will be investigated.

3.4.1.1 Decomposition of the Killing spinor and Maxwell equations

Contracting the Killing spinor equation (3.2) in the form ∇(A|A′|κCD) = 0 with τB
A′ one

obtains

∇(A|B|κCD) = 0

where ∇AB is the differential operator defined in equation (1.16). Using the decomposi-

tion (1.17) gives

1

2
ε(A|B|PκCD) +D(A|B|κCD) = 0.

Taking, respectively, the trace and the totally symmetric part of the above expression

one readily obtains the equations

PκAB +D(A
QκB)Q = 0, (3.19a)

D(ABκCD) = 0. (3.19b)

Equation (3.19a) can be naturally interpreted as an evolution equation for the spinor

κAB while equation (3.19b) plays the role of a constraint.

A similar calculation applied to the Maxwell equation, equation (1.6), in the form
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∇AA′φAC = 0 yields the equations

PφAB − 2DQ(AφB)Q = 0, (3.20a)

DABφAB = 0. (3.20b)

Again, equation (3.20a) is an evolution equation for the Maxwell spinor φAB while (3.20b)

is the spinorial version of the electromagnetic Gauss constraint.

Remark 16. The operation of Hermitian conjugation can be used to define, respectively,

the electric and magnetic parts of the Maxwell spinor:

EAB ≡
1

2

(
φ̂AB − φAB

)
, BAB ≡

i

2

(
φAB + φ̂AB

)
.

It is straightforward to verify that

ÊAB = −EAB, B̂AB = −BAB.

Thus, EAB and BAB are the spinorial counterparts of 3-dimensional tensors Ei and Bi –

the electric and magnetic parts of the Faraday tensor with respect to the normal to the

hypersurface S.

3.4.1.2 The decomposition of the components of the curvature

Crucial for the subsequent argument will be the fact that the restriction of the Weyl

spinor ΨABCD to an hypersurface S can be expressed in terms of quantities defined

on the hypersurface. In analogy to the case of the Maxwell spinor φAB, the Hermitian

conjugation operation can be used to decompose the Weyl spinor ΨABCD into its electric

and magnetic parts with respect to the normal to S:

EABCD ≡
1

2

(
ΨABCD + Ψ̂ABCD

)
, BABCD ≡

i

2

(
Ψ̂ABCD −ΨABCD

)
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so that

ΨABCD = EABCD + iBABCD.

The electrovacuum Bianchi identity (1.7) implies on S the constraint

DABΨABCD = −2φ̂ABDABφCD.

Finally, using the Gauss-Codazzi and Codazzi-Mainardi equations one finds that

EABCD = −r(ABCD) +
1

2
Ω(AB

PQΩCD)PQ −
1

6
ΩABCDK + E(ABECD),

BABCD = −iDQ
(AΩBCD)Q,

where rABCD is the spinorial counterpart of the Ricci tensor of the intrinsic metric of

the hypersurface S.

3.4.1.3 Decomposition of the derivatives of the Killing spinor candidate

Once again, the calculations in this section will utilise the computer algebra packages

contained in the xAct suite (see [43]).

Given a spinor κAB defined on the Cauchy hypersurface S, it will prove convenient

to define:

ξ ≡ DABκAB, (3.21a)

ξAB ≡
3

2
D(A

CκB)C , (3.21b)

ξABCD ≡ D(ABκCD). (3.21c)

These spinors correspond to the irreducible components of the Sen derivative of κAB, as

follows:

DABκCD = ξABCD −
1

3
εA(CξD)B −

1

3
εB(CξD)A −

1

3
εA(CεD)Bξ.
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Using the commutation relation for the Sen derivatives given in equation (1.24b), the

derivatives of ξ and ξAB can also be calculated. The irreducible components of DABξCD

are given on S (where we can assume that ΩAB = 0, equivalent to assuming that the

vector τ is normal to S) by

DABξAB = −1

2
Kξ +

3

4
ΩABCDξABCD +

3

2
ΘABφ̂

AB, (3.22a)

DA(BξC)
A = −DBCξ −

3

2
ΨBCADκ

AD +
2

3
KξBC +

1

2
ΩBCADξ

AD

− 3

2
Ω(B

ADF ξC)ADF +
3

2
DADξBCAD − 3ΘA(Bφ̂C)

A, (3.22b)

D(ABξCD) = 3ΨF (ABCκD)
F +KξABCD −

1

2
ξΩABCD + Ω(ABC

F ξD)F

− 3

2
Ω(AB

PQξCD)PQ + 3DF (AξBCD)F − 3Θ(ABφ̂CD), (3.22c)

where the Hermitian conjugate of the Maxwell spinor φ̂AB is defined by

φ̂AB ≡ τAA
′
τB

B′ φ̄A′B′ .

Note that in (3.22b), the term DABξ appears – there is no independent equation for the

Sen derivative of ξ.

The second order derivatives of ξ can also be calculated. On the hypersurface S these

take the form:

DABDABξ = − 1

6
K2ξ +

1

2
Kφ̂ABΘAB − 2φ̂ABφABξ +

2

3
ξABDABK

− 4φ̂ABφA
CξBC −

3

2
ΨABCDξABCD +

3

2
ξABCDDDFΩABC

F

− 3φ̂ABΘCDΩABCD −
1

2
ΩABCDΩABCDξ +

5

4
KΩABCDξABCD

+ 3κABΨA
CDFΩBCDF −

3

2
ΩAB

FGΩABCDξCDFG

− 3κABφ̂CDDBDφAC + 3κABφ̂A
CDCDφBD −

3

2
κABDCDΨAB

CD

+
1

2
ξABDCDΩAB

CD +
3

2
DCDDABξABCD + 3φ̂ABφCDξABCD

− 9

2
ΩABCDDDF ξABCF + 3ΘABDBC φ̂AC , (3.23a)
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DC (ADB)Cξ =
1

2
ΩABCDDCDξ −

1

3
KDABξ, (3.23b)

D(ABDCD)ξ =
1

3
φ̂EFΘEFΩABCD −ΨABCDξ −

5

9
KΩABCDξ

+
1

6
ΩEFPQΩABCDξEFPQ +

8

9
K2ξABCD +

1

3
ξDE(AΩBCD)

E

− 10

3
KDE(AξBCD)

E +
3

2
D(ABD|EF |ξCD)

EF +
3

2
DF (ADB|E|ξCD)

EF

+
1

2
D(A|FDE|F ξBCD)

E +
8

3
Kκ(A

EΨBCD)E −
3

2
κ(A

EDB|F |ΨCD)E
F

− 3

2
κEFD(ABΨCD)EF −

1

2
κEFDF (AΨBCD)E + 2ξφ̂(ABφCD)

− 8

3
Kφ̂(ABΘCD) + Θ(ABDC|E|φ̂D)

E + 3Θ(A
EDBC φ̂D)E

+ Θ(A
EDB|E|φ̂CD) + 2ΨE(ABCξD)

E +
1

6
ξΩ(AB

EFΩCD)EF

− 14

9
KΩE(ABCξD)

E − 5

3
KΩ(AB

EF ξCD)EF +
2

3
ΩE(ABCDD)

Eξ

+
3

2
Ω(ABC

EDFP ξD)EFP − Ω(AB
EFDCP ξD)EFP

+
1

2
Ω(AB

EFD|FP |ξCD)E
P − 3

2
Ω(A

EFPDBCξD)EFP

+
1

2
Ω(A

EFPDB|P |ξCD)EF +
2

3
ξ(ABDCD)K +

1

2
ξ(A

EDB|F |ΩCD)E
F

+
1

2
ξEFD(ABΩCD)EF +

1

6
ξEFDF (AΩBCD)E +

2

3
ξE(ABCDD)

EK

+
1

2
ξ(AB

EFDC|P |ΩD)EF
P +

3

2
ξ(A

EFPDBCΩD)EFP

+
1

2
ξ(A

EFPDB|P |ΩCD)EF + κ(A
Eφ̂BCDD)FφE

F

− 3κ(A
Eφ̂B

FDCD)φEF + 2κ(A
Eφ̂B

FDC|F |φD)E + κEF φ̂(ABDC|F |φD)E

+ 3κEF φ̂E(ADBCφD)F +
1

2
κE(AΨB

EFPΩCD)FP

− 1

2
κEFΨP

E(ABΩCD)FP +
3

2
κEFΨP

EF (AΩBCD)P

+
10

3
φ̂(ABφC

EξD)E +
2

3
φ̂(A

EφBCξD)E +
2

3
φE(Aφ̂B

EξCD)

− φ̂(ABφEF ξCD)EF + φ̂(A
EφB

F ξCD)EF + 3φE
F φ̂(A

EξBCD)F

+
1

6
φ̂(ABΘEFΩCD)EF +

2

3
φ̂(A

EΘB
FΩCD)EF +

3

2
ΘE

F φ̂(A
EΩBCD)F

+
1

6
φ̂EFΘ(ABΩCD)EF +

3

2
φ̂EFΘE(AΩBCD)F +

1

2
Ω(ABC

PΩD)EFP ξ
EF

+
1

6
ΩEFP (AΩBC

FP ξD)
E − 3

4
Ω(ABC

EΩD)
FPQξEFPQ

− 3

4
ΩE

FPQΩ(ABC
EξD)FPQ +

1

12
Ω(AB

EFΩCD)
PQξEFPQ
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+
1

3
ΩE(A

PQΩBC
EF ξD)FPQ +

1

12
ΩEF

PQΩ(AB
EF ξCD)PQ. (3.23c)

Remark 17. It is of interest to remark that equation (3.23b) is just the statement that

the Sen connection has torsion – cf. Remark 5.

An important and direct consequence of the above expressions is the following:

Lemma 11. Assume that ΩAB = 0 and D(ABκCD) = 0 on S. Then

DABDCDDEFκGH = HABCDEFGH

on S, where HABCDEFGH is a linear combination of κAB, DABκCD and DABDCDκEF

with coefficients depending on ΨABCD, KABCD, φAB, φ̂AB and DABφCD.

Proof. The proof follows from direct inspection of equations (3.22a)-(3.22c) and (3.23a)-

(3.23c).

Remark 18. The above result is strictly not true if ξABCD = D(ABκCD) 6= 0.

3.4.2 The decomposition of the Killing spinor data equations

This section will provide a systematic discussion of the decomposition of the Killing

initial data conditions in Theorem 6. The main purpose of this decomposition is to

untangle the interrelations between the various conditions and to obtain a minimal set

of equations which is intrinsic to the Cauchy hypersurface S.

For the ease of the discussion, the assumptions assumed to hold throughout this

section will be stated explicitly here:

Assumption 3. Given a Cauchy hypersurface S of an electrovacuum spacetime (M, g),

we assume that the hypothesis and conclusions of Theorem 6 hold.

Assumption 4. The spinor τAA
′

which on S is normal to S is extended off the initial

hypersurface in such a way that it is the spinorial counterpart of the tangent vector to a
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congruence of g-geodesics. Accordingly one has that KAB = 0 – that is, the acceleration

vanishes.

The second of these holds without loss of generality.

3.4.2.1 Decomposing HA′ABC = 0

Splitting the expression τD
A′HA′ABC into irreducible parts and using the definitions

(3.21a)-(3.21c) gives that the condition HA′ABC = 0 is equivalent to

ξABCD = 0, (3.24a)

PκAB = −2

3
ξAB. (3.24b)

Equation (3.24a) is a condition intrinsic to the hypersurface while (3.24b) is extrinsic –

i.e. it involves derivatives in the direction normal to S. Also, observe that the conditions

(3.24a) and (3.24b) are essentially the equations (3.19a) and (3.19b).

3.4.2.2 Decomposing ∇EE′HA′ABC = 0

If HA′ABC = 0 on S, it readily follows that DEFHA′ABC = 0 on S. Thus, in order

investigate the consequences of the second condition in (3.18a) it is only necessary to

consider the transverse derivative PHA′ABC . It follows that

τD
A′PHA′ABC = P

(
τD

A′HA′ABC

)
−HA′ABCPτDA

′

and so as HA′ABC |S = 0, the irreducible parts of τD
A′PHA′ABC = 0 are given by

PξABCD = 0, (3.25a)

P2κAB = −2

3
PξAB. (3.25b)
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Taking equation (3.25a) and commuting the DAB and P derivatives, and using equations

(3.24a) and (3.24b), gives

PξABCD = PD(ABκCD)

= 2ΨF
(ABCκD)F −

1

3
ξΩABCD +

2

3
ΩF

(ABCξD)F

− 2

3
D(ABξCD) − 2Θ(ABφ̂CD).

Substituting for the derivative of ξAB using (3.22c), and using equations (3.24a) and

(3.24b) again, gives

PξABCD = 4ΨF
(ABCκD)F = 0. (3.26)

To re-express condition (3.25b), the following result obtained by commuting the P

and DAB derivatives will be useful:

PξAB =
3

2
κCDΨABCD − 3ΘC(Aφ̂B)

C − 1

3
KξAB

+
1

2
ΩABCDξ

CD − 3

2
DC(APκB)

C .

(3.27)

Recall that the Killing spinor candidate κAB satisfies the homogeneous wave equation

(3.3b). Using the space-spinor decomposition relations (1.16) and (1.17), the wave oper-

ator can be split into Sen and normal derivative operators. The result is:

P2κAB =− 2κCDΨABCD +
1

3
KABξ +

2

3
ΩABξ − 2

3K(A
CξB)C

− 4

3
Ω(A

CξB)C +KCDξABCD + 2ΩCDξABCD

−KPκAB −
2

3
DABξ +

4

3
D(A

CξB)C − 2DCDξABCD

Applying conditions (3.24a) and (3.24b) to the right hand side of the latter, evaluating

at S (where ΩAB = 0) and setting KAB = 0 gives

P2κAB = −2κCDΨABCD +
2

3
KξAB −

2

3
DABξ +

4

3
D(A

CξB)C .
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Then, using equations (3.27) and (3.22b), as well as (3.24a) and (3.24b) as needed, it

can be shown that

P2κAB = −2

3
PξAB (3.28)

which is exactly the required condition. Thus, we have shown that the condition (3.25b)

is purely a consequence of the evolution equation for the Killing spinor candidate, along

with the conditions arising from HA′ABC |S = 0.

In summary, if κAB satisfies �κAB + ΨABCDκ
CD = 0, then the following are equivalent:

(i) HA′ABC |S = PHA′ABC |S = 0

(ii) ξABCD = 0, PκAB + 2
3ξAB = 0, ΨF

(ABCκD)F = 0.

3.4.2.3 Decomposing ΘAB = 0

As ΘAB has no unprimed indices, it is already in a space-spinor compatible form:

ΘAB = κ(A
CφB)C = 0. (3.29)

3.4.2.4 Decomposing ∇EE′ΘAB = 0

If ΘAB|S = 0, only the normal derivative PΘAB need be considered. Using the evolution

equation for the spinor φAB implied by Maxwell equations, equation (3.20a), along with

(3.24b) in the condition PΘAB = 0 gives the spatially intrinsic condition

κ(A|
CDCDφ|B)

D =
1

3
φ(A

CξB)C (3.30)

In summary, assuming (3.24b) holds, then the following are equivalent:

(i) ΘAB|S = PΘAB|S = 0
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(ii) κ(A
CφB)C = 0, κ(A|

CDCDφ|B)
D = 1

3φ(A
CξB)C .

3.4.2.5 Decomposing SAA′BB′ = 0

A point of departure for decomposing the condition SAA′BB′ |S = 0 is the relation linking

SAA′BB′ to ΘAB and the derivative of HA′ABC given by equation (3.8). Splitting the

derivative of HA′ABC into normal and tangential parts gives

SAA′BB′ = −6φ̄A′B′ΘAB +
1

2
τC (A′PHB′)ABC + τD(A′DDCHB′)ABC . (3.31)

We already have conditions ensuring that ΘAB|S = HA′ABC |S = PHA′ABC |S = 0, and

so as a consequence we automatically have that SAA′BB′ |S = 0.

3.4.2.6 Decomposing ∇EE′SAA′BB′ = 0

Again as SAA′BB′ |S = 0, one only needs to consider the normal derivative PSAA′BB′ .

Taking the normal derivative of equation (3.31) and using the Gaussian gauge condition

(KAB = 0) gives that on S:

PSAA′BB′ =− 6Pφ̄A′B′ΘAB − 6φ̄A′B′PΘAB + τC (A′P2HB′)ABC

+ τD(A′PDDCHB′)ABC .

The first and second terms on the right hand side are zero as a consequence of condi-

tions (3.29) and (3.30). The last term can be also shown to be zero by commuting the

derivatives and using (3.24a), (3.24b) and (3.26). This leaves

0 = PSAA′BB′ = τC (A′P2HB′)ABC . (3.32)
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Eliminating the primed indices by multiplying by factors of τAA′ gives

τ(C|
A′P2HA′AB|D) = 0

Thus, if this condition is satisfied on S, then it follows that PSAA′BB′ |S = 0. In the

following we investigate further the consequences of this condition. As in a Gaussian

gauge PτAA′ = 0 it readily follows that

P2
(
τ(C|

A′HA′AB|D)

)
= 0.

Splitting into irreducible parts, one obtains two necessary conditions:

P2ξABCD = 0, (3.33a)

P2

(
PκAB +

2

3
ξAB

)
= 0. (3.33b)

Consider first condition (3.33a). Commuting the Sen derivative with one of the

normal derivatives produces

P
(
PξABCD

)
= P

(
PD(ABκCD)

)
= P

(
2Ψ(ABC

FκD)F − 2Θ(ABφ̂CD) −
1

3
ΩABCDξ −

2

3
ΩF (ABCξ

F
D)

− 1

3
Ω(ABξCD) −

1

3
KξABCD + ΩF

(AξBCD)F − Ω(AB
EF ξCD)EF

+D(ABPκCD)

)
.

The previous conditions on S can now be used to eliminate terms. For example, the

second term in the bracket is zero from conditions (3.29) and (3.30). The fifth, sixth and

seventh terms vanish from (3.24a) and (3.26). Equations (3.24b) and (3.28) ca be used to

replace the last term – alternatively, one can commute the derivatives, use the substitu-

tion and then commute back; the result is the same. From this substitution one obtains

a factor D(ABξCD) inside the normal derivative, which can be replaced using (3.22c) –
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this equation is satisfied on the whole spacetime rather than just the hypersurface, so

taking normal derivatives of it is valid.

Proceeding as above, condition (3.33a) can be reduced to

P2ξABCD = P
(
4Ψ(ABC

FκD)F

)
= 0. (3.34)

Splitting the covariant derivatives in the Bianchi identity (1.7) into normal and tangential

components gives the following space-spinor version:

PΨABCD = −4φ̂F (ADFBφCD) − 4φ̂(ABDFCφD)F − 2DF (AΨBCD)
F .

One can use this expression to further reduce condition (3.34) to

ΨF (ABCξD)
F + 6φ̂F (Aκ

E
BDFCφD)E

+ 6φ̂(ABκ
E
CDFD)φEF + 3κ(A

FDB|EΨF |CD)
E = 0.

(3.35)

This is an intrinsic condition on S.

Consider now the condition (3.33b). In order to obtain insight into this condition, we

will make use, again, of the wave equation (3.3b) for the spinor κAB. Taking a normal

derivative of this equation, one obtains

P
(
�κAB + ΨABCDκ

CD
)

= 0.

Splitting the spacetime derivatives into normal and tangential parts and rearranging

gives

P
(
P2κAB

)
= P

(
− 2κCDΨABCD +

2

3
ΩABξ −

4

3
Ω(A

CξB)C + 2ΩCDξABCD

−KPκAB −
2

3
DABξ −

4

3
DC(AξB)

C − 2DCDξABCD
)
.

As before, previous conditions can be used to eliminate terms. The fourth and eight
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terms on the right hand side vanish due to (3.24a) and (3.26). Also, equation (3.22b)

can be used to replace the seventh term – this is because the relation (3.22b) holds on

the whole spacetime, and so one can take normal derivatives of it freely. These steps

give

P
(
P2κAB

)
= P

(
2

3
Ω(A

CξB)C −
2

9
KξAB −

2

3
ΩABCDξ

CD +
2

3
DABξ

)
.

Alternatively, consider the second derivative of ξAB, given by applying a normal deriva-

tive to equation (3.27) – note that equation (3.27) applies on the whole spacetime, so

one can take the normal derivative. This yields

P2ξAB = P
(

3

2
κCDΨABCD − 3ΘC(Aφ̂B)

C − 1

2
ΩABξ −

1

3
KξAB +

1

2
Ω(A

CξB)C

+
1

2
ΩABCDξ

CD +
3

4
ΩCDξABCD −

3

2
Ω(A

CDF ξB)CDF −
3

2
DC(APκB)

C

)
.

As before, we can use the conditions (3.24a), (3.24b), (3.26) and (3.28), and the identity

(3.22b) to reduce this to

P2ξAB = P
(

1

3
KξAB − Ω(A

CξB)C + ΩABCDξ
CD −DABξ

)
.

By comparing terms, it follows that

P3κAB = −2

3
P2ξAB

which is exactly the second condition (3.33b). So, no further conditions are needed to

be prescribed on the hypersurface – this condition arises naturally from the evolution

equation for the Killing spinor.
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3.4.2.7 Decomposing ζAA′ = 0

Recalling the definition of ζAA′ , equation (3.12), and the decomposition of the spacetime

covariant derivative given by (1.16) and (1.17), one obtains

ζAA′ = ∇BA′ΘAB

=
1

2
τBA′PΘAB − τCA′DCBΘAB.

From conditions (3.29) and (3.30) it then follows that ζAA′ |S = 0.

3.4.2.8 Decomposing ∇EE′ζAA′ = 0

Again, if ζAA′ |S = 0 then one one only needs to consider the transverse derivative PζAA′ .

By definition one has that

PζAA′ = P∇BA′ΘAB

= P
(
− τCA′DBC +

1

2
τBA′P

)
ΘAB

=
1

2
τBA′P2ΘAB

where the last equation has been obtained by commuting the Sen and normal derivatives,

and using (3.30). Therefore, the vanishing of the derivative of ζAA′ is equivalent to

P2ΘAB = 0.

under the assumption that ζAA′ |S = 0. Now, recalling the wave equation for ΘAB

(equation (3.13)), notice that the right hand side vanishes on S as a consequence of

(3.24a), (3.24b) and (3.26), so that one is left with

�ΘAB|S = 0.
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Finally, expanding the wave operator on the left hand side gives that on S,

�ΘAB = ∇CC′∇CC′ΘAB

=

(
−τBC′DCB +

1

2
τCC

′P
)(
−τBC′DBC +

1

2
τCC′P

)
ΘAB

=
1

4
τCC

′
τCC′P2ΘAB

where the last line follows by commuting the derivatives where appropriate and using

conditions (3.29) and (3.30). As τCC
′
τCC′ = 2 by definition, we find that P2ΘAB = 0 as

a consequence of the evolution equation for ΘAB.

3.4.3 Eliminating redundant conditions

The discussion of the previous subsections can be summarised in the following:

Theorem 7. Let κAB denote a Killing spinor candidate on an electrovacuum spacetime

(M, g,F ). If κAB satisfies on a Cauchy hypersurface S the intrinsic conditions

ξABCD = 0, (3.36a)

ΨF (ABCκD)
F = 0, (3.36b)

κ(A
CφB)C = 0, (3.36c)

κ(A|
CDCDφ|B)

D =
1

3
φ(A

CξB)C , (3.36d)

3κ(A
FDBEΨCD)EF + Ψ(ABC

F ξD)F = 6φ̂F (Aκ
E
BDFCφD)E (3.36e)

+ 6φ̂(ABκ
E
CDFD)φEF ,

and its normal derivative at S is given by

PκAB = −2

3
ξAB,

then κAB is, in fact, a Killing spinor.
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Remark 19. Note that

ΘAB = κ(A
CφB)C = 0 ⇒ φAB ∝ κAB

Using this fact, it is possible to express (3.36d) and (3.36e) as a condition on the pro-

portionality factor relating the Killing spinor κAB and the Maxwell spinor φAB.

In order to simplify the conditions in Theorem 7 and to analyse their various inter-

relations, we proceed by looking at the different algebraic types that the Killing spinor

can have. First, consider the algebraically general case:

Lemma 12. Assume that a symmetric spinor κAB satisfies the conditions

κABκ
AB 6= 0, ξABCD = ΨF (ABCκD)

F = κ(A
CφB)C = 0

on an open subset U ⊂ S. Then, there exists a spin basis {oA, ιA} with oAι
A = 1 such

that the spinors κAB and φAB can be expanded as

κAB = eκo(AιB), φAB = ϕo(AιB).

Furthermore, if Q ≡ ϕe2κ is a constant on U , then conditions (3.36d) and (3.36e) are

satisfied on U .

Proof. The first part of the lemma follows directly from κABκ
AB 6= 0, and the fact that

κ(A
CφB)C = 0 implies that φAB ∝ κAB. The condition ΨF (ABCκD)

F = 0 also allows the

Weyl spinor to be expanded in the same basis:

ΨABCD = ψo(AoBιCιD).

To show the redundancy of (3.36d) and (3.36e), the equation D(ABκCD) = 0 will

be decomposed into irreducible components. To simplify the notation, use the D,∆, δ
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symbols from the Newman-Penrose formalism to represent directional derivatives:

D ≡ oAoBDAB, ∆ ≡ ιAιBDAB, δ ≡ oAιBDAB.

The irreducible components of D(ABκCD) = 0 then become:

oCDoC = 0, (3.37a)

oCδoC = −1

2
Dκ, (3.37b)

ιCDιC − oC∆oC = 2δκ, (3.37c)

ιCδιC =
1

2
∆κ, (3.37d)

ιC∆ιC = 0. (3.37e)

Using these, one can show that

e−κξAB = −3oAoBι
F διF − 3ιAιBo

F δoF +
3

2
o(AιB)

(
ιFDιF + oF∆oF

)
.

In a similar way, using the electromagnetic Gauss constraint, equation (3.20b), together

with the basis expansion for φAB, one obtains

δϕ+ 2ϕδκ = 0 (3.38)

on S.

The spacetime Bianchi identity (1.7) implies the constraint

DCDΨABCD = −2φ̂CDDCDφAB (3.39)

on S, of which we now wish to find the irreducible components. To find the basis

expansion of the Hermitian conjugate φ̂AB, note that:

oAô
A ≡ oAτAA

′
ōA′ = τAA′o

AōA
′

= τak
a
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where ka ≡ oAōA′ . As τa is timelike and ka is null, this scalar product is non-zero, and

so the pair {oA, ôA} forms a basis. We expand the spinor ιA in this basis as

ιA = aôA + boA.

for some a, b ∈ C. Contracting this with oA gives 1/a = oAô
A ≥ 0, and so the basis

coefficient a is non-negative. Taking the Hermitian conjugate gives:

ι̂A = −āoA + b̄ôA.

Using the above expressions we can find the basis expansion of φ̂AB. Namely, one has

that:

φ̂AB =
1

2
ϕ̄(ôAι̂B + ι̂AôB)

=
1

2
ϕ̄(−āoAôB − āôAoB + 2b̄ôAôB)

=
ϕ̄b̄

a2
ιAιB +

ϕ̄b

a2
(|a|2 + |b|2)oAoB −

ϕ̄

a2
(|a|2 + 2|b|2)o(AιB).

Now, using the basis expansion for the Weyl spinor, contracting with combinations

of oA and ιA and using the relations given in (3.37a)-(3.37e) and (3.38), the components

of (3.39) become

Dψ + 3ψDκ =
6|ϕ|2

a2
(|a|2 + 2|b|2)Dκ +

12b̄|ϕ|2

a2
oA∆oA,

∆ψ + 3ψ∆κ =
6|ϕ|2

a2
(|a|2 + 2|b|2)∆κ − 12b|ϕ|2

a2
(|a|2 + |b|2)ιADιA,

δψ + 3ψδκ = −6|ϕ|2

a2
(|a|2 + 2|b|2)δκ − 3bϕ̄

a2
(|a|2 + |b|2)Dϕ− 3b̄ϕ̄

a2
∆ϕ.

Exploiting the conditions (3.37a)-(3.37e) and the expansions of the Maxwell and the

Bianchi constraints, condition (3.36e) can be decomposed into the following non-trivial
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irreducible parts:

b̄ϕ̄

a2
(Dϕ+ 2ϕDκ) = 0,

ϕ̄

a2
(|a|2 + 2|b|2) (Dϕ+ 2ϕDκ) = 0,

ϕ̄

a2
(|a|2 + 2|b|2) (∆ϕ+ 2ϕ∆κ) = 0,

bϕ̄

a2
(|a|2 + |b|2) (∆ϕ+ 2ϕ∆κ) = 0.

Assuming ϕ 6= 0, these conditions along with the Maxwell constraint (3.38) are equivalent

to the following basis-independent expression, also independent of the value of a and b:

DABϕ+ 2ϕDABκ = 0.

The latter can be written as

DAB
(
ϕe2κ

)
= DABQ = 0.

Therefore, under the hypotheses of the present lemma, equation (3.36e) is equivalent to

the requirement of Q being constant in a domain U ⊂ S. In a similar way, substituting

the above relations in equation (3.36d) and splitting into irreducible parts gives the

following set of equivalent conditions:

eκ (Dϕ+ 2φDκ) = 0,

eκ (∆ϕ+ 2ϕ∆κ) = 0,

eκ (δϕ+ 2ϕδκ) = 0.

As eκ is non-zero, this set of conditions is again equivalent to the constancy of Q in

U ⊂ S.

Next, consider the case when the Killing spinor is algebraically special:
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Lemma 13. Assume the symmetric spinor κAB satisfies the conditions

κABκ
AB = 0, κABκ̂

AB 6= 0, ξABCD = ΨF (ABCκD)
F = κ(A

CφB)C = 0

on an open subset U ⊂ S. Then, there exists a normalised spin basis {oA, ιA} such that

the spinors κAB and φAB can be expanded as

κAB = eκoAoB, φAB = ϕoAoB.

Furthermore, the equations (3.36d) and (3.36e) are satisfied on U ⊂ S.

Proof. The first part of the lemma follows directly from the hypothesis κABκ
AB =

0, κABκ̂
AB 6= 0, and the fact that κ(A

CφB)C = 0 implies φAB ∝ κAB. The condi-

tion ΨF (ABCκD)
F = 0 also allows the Weyl spinor to be expanded in the same basis

as

ΨABCD = ψoAoBoCoD.

In this basis, the components of the equation D(ABκCD) = 0 become

oADoA = 0,

Dκ + 4oAδoA + 2ιADoA = 0,

δκ + oA∆oA + 2ιAδoA = 0,

∆κ + 2ιA∆oA = 0.

Using these relations one can show that

e−κξAB = 3oAoBo
C∆oC − 6o(AιB)o

CδoC .

The Maxwell constraint, equation (3.20b), on S is equivalent to

Dφ− φDκ − 6φoAδoA = 0,
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and the o(AιB) component of the Bianchi constraint

DCDΨABCD = −2φ̂CDDCDφAB

on S, as a consequence of the previous relations, is equivalent to the following condition:

|ϕ|2oA∆oA − 2b|ϕ|2oAδoA = 0.

Then, by substituting all the relevant basis expansions into (3.36d) and (3.36e), and split-

ting the equations into irreducible parts, one finds that both conditions are automatically

satisfied as a result of the above relations.

We round up the discussion of this section with the following electrovacuum analogue

of Theorem 4 in [4]:

Lemma 14. Assume that one has a symmetric spinor κAB satisfying the conditions

D(ABκCD) = ΨF (ABCκD)
F = κ(A

CφB)C = 0

on the Cauchy hypersurface S and that the complex function

Q2 ≡
(
κABκ

AB
)2
φABφ

AB

is constant on S. Then the domain of dependence, D+(S), of the initial data set

(S, g,K,F ) will admit a Killing spinor.

Proof. Let U1 be the set of all points in S where κABκ
AB 6= 0 and U2 be the set of all

points in S where κABκ̂
AB 6= 0. The scalar functions κABκ

AB : S → C and κABκ̂
AB :

S → R are continuous. Therefore, U1 and U2 are open sets. Now, let V1 and V2 denote,

respectively, the interiors of S \ U1 and V1 \ U2. On the open set V1 ∩ U2, we have that

κABκ
AB = 0 and κABκ̂

AB 6= 0. Hence, by Lemma 13, the conditions (3.36d) and (3.36e)

are satisfied on V1 ∩ U2. Similarly, by Lemma 12, conditions (3.36d) and (3.36e) are
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satisfied on U1. On the open set V2, we have that κAB = 0 and therefore (3.36d) and

(3.36e) are trivially satisfied on V2. Using the above sets, the 3-manifold S can be split

as

intS = U1 ∪ (V1 ∩ U2) ∪ V2 ∪ ∂U1 ∪ ∂V2.

By hypothesis, all terms in conditions (3.36d) and (3.36e) are continuous, and the con-

ditions themselves are satisfied on the open sets U1, V2 and V1 ∩ U2. By continuity,

the conditions are also satisfied on the boundaries ∂U1 and ∂V2. Therefore, (3.36d) and

(3.36e) are satisfied on intS, and by continuity this extends to the whole of S.

3.4.4 Summary

The calculations from the current section can be summarised in the following theorem:

Theorem 8. Let (S,h,K,F ) be an initial data set for the Einstein-Maxwell field equa-

tions where S is a Cauchy hypersurface. If the conditions

ξABCD = 0, (3.40a)

ΨF (ABCκD)
F = 0, (3.40b)

κ(A
CφB)C = 0, (3.40c)

Q2 ≡
(
κABκ

AB
)2
φABφ

AB = constant, (3.40d)

are satisfied on S, then the development of the initial data set will admit a Killing spinor

in the domain of dependence of S. The Killing spinor is obtained by evolving (3.3b) with

initial data on S satisfying the above conditions and

PκAB = −2

3
ξAB.
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3.5 The approximate Killing spinor equation

In the previous section, conditions on an initial data set for the Einstein-Maxwell equa-

tions were identified that guarantee the existence of a Killing spinor on the resultant

spacetime – see Theorem 8. Together with the characterisation of the Kerr-Newman

spacetime given by Theorem 5, this provides a way of characterising initial data for the

Kerr-Newman spacetime. The key equation in this characterisation is the spatial Killing

spinor equation

D(ABκCD) = 0.

As it will be seen in the following, this equation is overdetermined and thus, admits no

solution for a generic initial data set (S,h,K,F ). Following the discussion of Section 5

in [6], this section will show how to construct an elliptic equation for a spinor κAB over

S which can always be solved and which provides, in some sense, a best fit to a spatial

Killing spinor. This approximate Killing spinor will be used, in turn, to measure the

deviation of the electrovacuum initial data set under consideration from initial data for

the Kerr-Newman spacetime.

3.5.1 Basic identities

First, we will briefly discuss the basic ellipticity properties of the spatial Killing equation.

In what follows, let S(AB)(S) and S(ABCD)(S) denote, respectively, the space of totally

symmetric valence 2 and 4 spinor fields over the 3-manifold S. Given µAB, νAB ∈

S(AB)(S), ζABCD, χABCD ∈ S(ABCD)(S) one can use the Hermitian structure induced

on S by τAA
′

to define an inner product in S(AB)(S) and S(ABCD)(S), respectively, via

〈µ,ν〉2 ≡
∫
S
µAB ν̂

ABdµ, 〈ζ,χ〉2 ≡
∫
S
ζABCDχ̂

ABCDdµ (3.41)

where dµ denotes volume form of the 3-metric h.
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Let now Φ denote the spatial Killing spinor operator

Φ : S(AB)(S) −→ S(ABCD)(S), Φ(κ) ≡ D(ABκCD).

The inner product (3.41) allows one to define Φ∗ : S(ABCD)(S) −→ S(AB)(S), the formal

adjoint of Φ, through the condition

〈Φ(κ), ζ〉2 = 〈κ,Φ∗(ζ)〉2.

In order to evaluate the above condition one makes use of the identity (obtained using

integration by parts)

∫
∂U
nABκCD ζ̂ABCDdS =

∫
U
DABκCD ζ̂ABCDdµ−

∫
U
κAB ̂DCDζABCDdµ

+

∫
U

2κABΩCDF
Aζ̂BCDFdµ

(3.42)

with U ⊂ S and where dS denotes the area element of ∂U , nAB is the spinorial coun-

terpart of its outward pointing normal and ζABCD is a totally symmetric spinorial field.

Now, observing that

〈Φ(κ), ζ〉2 =

∫
S
D(ABκCD)ζ̂

ABCDdµ

=

∫
S
DABκCD ζ̂ABCDdµ,

it follows then from the identity (3.42) that

Φ∗(ζ) = DABζABCD − 2ΩABF
(CζD)ABF .

Definition 3. The composition operator L ≡ Φ∗ ◦Φ : S(AB)(S) −→ S(AB)(S) given by

L(κ) ≡ DABD(ABκCD) − ΩABF
(AD|DF |κB)C − ΩABF

(ADB)FκCD (3.43)
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will be called the approximate Killing spinor operator and the equation

L(κ) = 0

the approximate Killing spinor equation.

Remark 20. A direct computation shows that the approximate Killing spinor equation

(3.43) is, in fact, the Euler-Lagrange equation of the functional

J ≡
∫
S
D(ABκCD)

̂DABκCDdµ.

3.5.2 Ellipticity of the approximate Killing spinor equation

The key observation concerning the approximate Killing spinor operator is given in the

following:

Lemma 15. The operator L is a formally self-adjoint elliptic operator.

Proof. It is sufficient to look at the principal part of the operator L given by

P (L)(κ) = DABD(ABκCD).

The symbol for this operator is given by

σL(ξ) ≡ ξABξ(ABκCD)

where the argument ξAB satisfies ξAB = ξ(AB) and ξ̂AB = −ξAB – i.e. ξ is a real

symmetric spinor. Also, define an inner product 〈 , 〉 on the space of symmetric valence-2

spinors by

〈ξ,η〉 ≡ ξ̂ABηAB.
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The operator L is elliptic if the map

σL(ξ) : κAB 7→ ξCDξ(CDκAB)

is an isomorphism when |ξ|2 ≡ 〈ξ, ξ〉 6= 0. As the above mapping is linear and between

vector spaces of the same dimension, one only needs to verify injectivity – in other words,

that if ξABξ(ABκCD) = 0, then κAB = 0. To show this, first expand the symmetrisation

to obtain

−κCD|ξ|2 − 〈ξ,κ〉ξCD + 2ξABξCBκAD + 2ξABξDBκAC = 0,

where the reality condition ξ̂AB = −ξAB has been used. Note also that the spinorial

Jacobi identity implies that

ξABξCB = −1

2
δC

A|ξ|2

which reduces the above equation to

3κCD|ξ|2 + ξCD〈ξ,κ〉 = 0.

Contracting this with κ̂CD, and using the conjugate symmetry of the inner product, we

obtain

3|κ|2|ξ|2 + |〈ξ,κ〉|2 = 0.

Both of these terms are positive, and so the equality can only hold if each term vanishes

individually. Taking the first of these, one sees that when |ξ|2 6= 0, we must have |κ|2 = 0.

This is equivalent to κAB = 0, completing the proof of injectivity and establishing the

ellipticity of L.
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3.6 The approximate Killing spinor equation in asymptot-

ically Euclidean manifolds

Now that the elliptic character of the approximate Killing spinor equation has been

established, we can now move on to discuss the construction of a solution of the approx-

imate Killing spinor equation, equation (3.43), in asymptotically Euclidean manifolds.

The main conclusion of this section is that for this type of initial data set for the Einstein-

Maxwell equations it is always possible to construct an approximate Killing spinor.

3.6.1 Weighted Sobolev norms

The discussion of asymptotic boundary conditions for the approximate Killing equation

on asymptotically flat manifolds makes use of weighted Sobolev norms and spaces; here,

the necessary terminology and conventions to follow the discussion will be established,

following those laid out in [8].

For a point p ∈ S, define the function σ : S → R by

σ(x) ≡
(
1 + d(p, x)2

) 1
2

where d is the Riemannian distance function on S. Using this, define the following

weighted L2 norm, for δ ∈ R:

‖ u ‖δ ≡
(∫
S
|u|2σ−2δ−3dx

) 1
2

For example, the choice δ = −3
2 gives the usual L2 norm. Similarly, let Hs

δ with s a

non-negative index denote the weighted Sobolev space of functions for which the norm

‖ u ‖s,δ≡
∑

0≤|α|≤s

‖ Dαu ‖δ−|α|



Chapter 3. A geometric invariant characterising Kerr-Newman initial data 106

is finite, where α = (α1, α2, α3) is a multi-index and |α| ≡ α1 + α2 + α3. We say that

the function u ∈ H∞δ if u ∈ Hs
δ for all s. Furthermore, a spinor or a tensor is said to

belong to a function space if its norm does – so, for instance ζAB ∈ Hs
δ is a shorthand

for (ζAB ζ̂
AB +ζA

Aζ̂B
B)1/2 ∈ Hs

δ . A property of the weighted Sobolev spaces that will be

used repeatedly is the following: if u ∈ H∞δ , then u is smooth (i.e. C∞ over S) and has

a fall off at infinity such that Dαu = o(rδ−|α|)1. In a slight abuse of notation, if u ∈ H∞δ
then we will often say that u = o∞(rδ) in a given asymptotic end.

3.6.2 Asymptotically Euclidean manifolds

The remainder of this chapter will concern Einstein-Maxwell initial data sets with a

specific asymptotic behaviour, imposing a restriction on the class of such initial data

sets. The Einstein-Maxwell constraint equations are given by

r −K2 +KijK
ij = 2ρ,

DjKij −DiK = ji,

DiEi = 0,

DiBi = 0,

where Di denotes the Levi-Civita connection of the 3-metric h, r is the associated Ricci

scalar, Kij is the extrinsic curvature, K ≡ Ki
i, ρ is the energy-density of the electro-

magnetic field, ji is the associated Poynting vector and Ei and Bi denote the electric

and magnetic parts of the Faraday tensor with respect to the unit normal of S. The

following restriction on this data will be assumed:

Assumption 5. The initial data set (h,K,E,B) for the Einstein-Maxwell equations is

asymptotically Reissner-Nordström in the sense that in each asymptotic end of S there

1Recall that the small o indicates that if f(x) = o(xn), then f(x)/xn → 0 as x → 0.
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exist asymptotically Cartesian coordinates (xα) and two constants m, q for which

hαβ = −
(

1 +
2m

r

)
δαβ + o∞(r−3/2), (3.44a)

Kαβ = o∞(r−5/2), (3.44b)

Eα =
qxα
r3

+ o∞(r−5/2), (3.44c)

Bα = o∞(r−5/2). (3.44d)

Remark 21. The asymptotic conditions spelled in Assumption 5 ensure that the total

electric charge of the initial data is non-vanishing. In particular, it contains standard

initial data for the Kerr-Newman spacetime in, say, Boyer-Lindquist coordinates as an

example. More generally, the assumptions are consistent with the notion of stationary

asymptotically flat end provided in Definition 1.

Remark 22. The above class of initial data is not the most general one could consider.

In particular, conditions (3.44a)-(3.44d) exclude boosted initial data. In order to do so

one would require that

Kαβ = o∞(r−3/2).

The Einstein-Maxwell constraint equations would then require one to modify the leading

behaviour of the 3-metric hαβ. The required modifications for this extension of the

present analysis are discussed in [6].

3.6.3 Asymptotic behaviour of the approximate Killing spinor

We can now discuss the asymptotic behaviour of solutions to the spatial Killing spinor

equation on asymptotically Euclidean manifolds of the type described in Assumption 5.

The strategy for doing this will be to first consider the behaviour of the Killing spinor in

the exact Kerr-Newman spacetime; then, impose the same asymptotics on solutions to

the approximate Killing spinor equation on slices of a more general spacetime. In what

follows, the analysis will be focussed on the asymptotic end of the spacetime.
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3.6.3.1 Asymptotic behaviour in the exact Kerr-Newman spacetime

For the exact Kerr-Newman spacetime with mass m, angular momentum a and charge

q it is possible to introduce a NP frame {la, na, ma, m̄a} with associated spin dyad

{oA, ιA} such that the spinors κAB, φAB and ΨABCD admit the expansion

κAB = κo(AιB), φAB = ϕo(AιB), ΨABCD = ψo(AoBιCιD),

with

κ =
2

3
(r − ia cos θ),

ϕ =
q

(r − ia cos θ)2
,

ψ =
6

(r − ia cos θ)3

(
q2

r + ia cos θ
−m

)
,

where r denotes the standard Boyer-Lindquist radial coordinate – see [3] for more details.

A further computation shows that the spinorial counterpart, ξAA
′
, of the Killing vector

ξa takes the form

ξAA′ = −3

2
κ(µoAōA′ − πoAῑA′ + τιAōA′ − ριAῑA′) (3.45)

where the NP spin connection coefficients µ, π, τ and ρ satisfy the conditions

µ̄κ̄ = µκ, τ̄ κ̄ = κπ, ρ̄κ̄ = κρ

which ensure that ξAA′ is a Hermitian spinor – i.e. ξAA′ = ξ̄AA′ . Despite the conciseness of

the above expressions, the basis of principal spinors given by {oA, ιA} is not well adapted

to the discussion of asymptotics on a stationary end of the Kerr-Newman spacetime.

From the point of view of asymptotics, a better representation of the Kerr-Newman

spacetime is obtained using a NP frame {l′a, n′a, m′a, m̄′a} with associated spin dyad
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{o′A, ι′A} such that

τa = l′a + n′a =
√

2(∂t)
a,

where the vector τa is the tensorial counterpart of the spinor τAA
′
. Writing this in the

spinorial basis gives

τAA
′

= o′Aō′A
′
+ ι′Aῑ′A

′
. (3.46)

Notice, in particular, that from the above expression it follows that ι′A = ô′A. As τAA′ =
√

2ξAA′ , one can use the expressions (3.45) and (3.46) to compute the leading terms of the

Lorentz transformation relating the NP frames {la, na, ma, m̄a} and {l′a, n′a, m′a, m̄′a}.

In what follows it will be convenient to denote the spinors of the basis {o′A, ι′A} in

the form {εAA} where

ε0
A = o′A, ε1

A = ι′A.

Moreover, let κAB ≡ εA
AεB

BκAB denote the components of κAB with respect to the

basis {εAA}. It can then be shown (through a long computation) that for Kerr-Newman

initial data satisfying the asymptotic conditions (3.44a)-(3.44d) one can choose asymp-

totically Cartesian coordinates (xα) = (x1, x2, x3) and orthonormal frames on the asymp-

totic ends such that

κAB = ∓
√

2

3
xAB ∓

2
√

2m

3r
xAB + o∞(r−1/2), (3.47)

with

xAB ≡
1√
2

 −x1 + ix2 x3

x3 x1 + ix2

 .

From the above expressions one finds that on the asymptotic ends

ξ = ±
√

2 + o∞(r−1/2),

ξAB = o∞(r−1/2),

where ξAB ≡ εA
AεB

BξAB. Moreover, for any electrovacuum initial data set satisfying
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the conditions (3.44a)-(3.44d) a spinor of the form (3.47) satisfies

D(ABκCD) = o∞(r−3/2).

3.6.3.2 Asymptotic behaviour for non-Kerr data

Not unsurprisingly, given electrovacuum initial data satisfying the conditions (3.44a)-

(3.44d), it is always possible to find a spinor κAB consistent with the expansion (3.47)

in the asymptotic region. More precisely, one has:

Lemma 16. For any asymptotic end of an electrovacuum initial data set satisfying

(3.44a)-(3.44d) there exists a spinor κAB such that

κAB = ∓
√

2

3
xAB ∓

2
√

2m

3r
xAB + o∞(r−1/2)

with

ξ = ±
√

2 + o∞(r−1/2), (3.48a)

ξAB = o∞(r−1/2), (3.48b)

ξABCD = o∞(r−3/2). (3.48c)

The spinor κAB is unique up to order o∞(r−1/2), up to the addition of a constant term.

Proof. The proof follows the same structure of Theorem 17 in [6], where the vacuum

case is considered. The argument goes as follows: first, substitution of the expansion for

κAB given yields the asymptotic behaviours in (3.48a)-(3.48c), and so all one is required

to show is that this expansion is unique. To do this, let κ̃AB be a spinor satisfying the

conditions of the lemma, define

◦
κAB ≡ ∓

√
2

3
xAB ∓

2
√

2m

3r
xAB,
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and consider κAB ≡ κ̃AB −
◦
κAB. To obtain the desired result, one need only show that

κAB = CAB +o∞(r−1/2), for CAB a constant spinor. This is equivalent to showing that

DABκCD = o∞(r−3/2), a coordinate independent statement. This is done by evaluating

the asymptotic behaviour of the right hand sides of equations (3.23a)-(3.23c) (using the

additional fact not present in the vacuum case that the Maxwell spinor φAB = o∞(r−2),

a consequence of (3.44c)-(3.44d)) and integrating to obtain stronger asymptotic decay

behaviour for ξ and ξAB. As these are the irreducible components of DABκCD, this

gives the required result (these calculations are identical to the those in Theorem 17 in

[6]).

In the analysis of the construction of a solution to the approximate Killing spinor

equation, it is crucial that there exist no nontrivial spatial Killing spinors that go to zero

at infinity. More precisely, one has the following:

Lemma 17. Let νAB ∈ H∞−1/2 be a solution to D(ABνCD) = 0 on an electrovacuum

initial data set satisfying the asymptotic conditions (3.44a)-(3.44d). Then νAB = 0 on

S.

Proof. From Lemma 11 one can write DABDCDDEFκGH as a linear combination of lower

order derivatives, with smooth coefficients. Direct inspection shows that the coefficients

in this linear combination have the decay conditions to make use of Theorem 20 from [6]

with m = 2. It then follows that νAB must vanish on S.

3.6.4 Solving the approximate Killing spinor equation

Consider now solutions to the approximate Killing spinor equation of the form:

κAB = κ̊AB + θAB, θAB ∈ H∞−1/2 (3.49)

with κ̊AB the spinor discussed in Lemma 16. For this ansatz one has the following:
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Theorem 9. Given an electrovacuum asymptotically Euclidean initial data set (S,h,K,E,B)

satisfying the asymptotic conditions (3.44a)-(3.44d), there exists a smooth unique solu-

tion to the approximate Killing spinor equation (3.43) of the form (3.49).

Proof. The proof is analogous to that of Theorem 25 in [6]; it is presented for complete-

ness, as it is important for the main result of this chapter.

Substitution of the Ansatz (3.49) into equation (3.43) yields the equation

L(θAB) = −L(̊κAB) (3.50)

for the spinor θAB. Due to elliptic regularity, any solution to the above equation of class

H2
−1/2 is, in fact, a solution of class H∞−1/2. Thus, if a solution θAB exists then it must be

smooth. By construction – see Lemma 16 – it follows that D(ABκCD) ∈ H∞−3/2 so that

FAB ≡ −L(̊κAB) ∈ H∞−5/2.

In order to discuss the existence of solutions we make use of the Fredholm alternative for

weighted Sobolev spaces. In the particular case of equation (3.50) there exists a unique

solution of class H2
−1/2 if ∫

S
FAB ν̂

ABdµ = 0

for all νAB ∈ H2
−1/2 satisfying

L∗(νCD) = L(νCD) = 0.

It will now be shown that a spinor νAB satisfying the above must be trivial. Using the

identity (3.42) with ζABCD = D(ABνCD) and assuming that L(νCD) = 0 one obtains

∫
S
DABνCD ̂D(ABνCD)dµ =

∫
∂S∞

nABνCD ̂D(ABνCD)dS

where ∂S∞ denotes the sphere at infinity. Now, as νAB ∈ H2
−1/2 by assumption, it
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follows that D(ABνCD) ∈ H∞−3/2 and that

nABνCD ̂D(ABνCD) = o(r−2).

The integration of the latter over a finite sphere is of order o(1). Accordingly, the integral

over the sphere at infinity ∂S∞ vanishes and, moreover,

∫
S
DABνCD ̂D(ABνCD)dµ = 0.

Thus, one concludes that

D(ABνCD) = 0 over S

so that νAB is a Killing spinor candidate. Lemma 17 shows that there are no non-trivial

Killing spinor candidates that go to zero at infinity.

It follows from the discussion in the previous paragraph that the kernel of the approx-

imate Killing spinor operator is trivial and that the Fredholm alternative imposes no

obstruction to the existence of solutions to (3.50). Thus, one obtains a unique solution

to the approximate Killing spinor equation with the prescribed asymptotic behaviour at

infinity.

3.7 The geometric invariant

Now that a process for constructing an approximate Killing spinor on an initial data

set with asymptotic behaviour given by (3.44a)-(3.44d) has been outlined, we can use

this spinor to construct an invariant measuring the deviation of the initial data set from

initial data for the exact Kerr-Newman spacetime.

In the following let κAB denote the approximate Killing spinor obtained from Theo-



Chapter 3. A geometric invariant characterising Kerr-Newman initial data 114

rem 9, and let

J ≡
∫
S
D(ABκCD)

̂DABκCDdµ,

I1 ≡
∫
S

Ψ(ABC
FκD)F

̂ΨABCGκDGdµ,

I2 ≡
∫
S

ΘABΘ̂ABdµ,

I3 ≡
∫
S
DABQ2D̂ABQ2dµ,

where following the notation of Section 3.4 one has

ΘAB ≡ 2κ(A
QφB)Q, Q2 ≡

(
κABκ

AB
)2
φABφ

AB.

The above integrals are well-defined due to the following result:

Lemma 18. Given the approximate Killing spinor κAB obtained from Theorem 9, one

has that

J, I1, I2, I3 <∞.

Proof. By construction one has that the spinor κAB obtained from Theorem 9 satisfies

D(ABκCD) ∈ H0
−3/2. It follows then from the definition of the weighted Sobolev norm

that

‖ ∇(ABκCD) ‖H0
−3/2

= ‖ ∇(ABκCD) ‖L2 = J <∞.

To verify the boundedness of I1, notice that by assumption ΨABCD ∈ H∞−3+ε and κAB ∈

H∞1+ε; it follows by the multiplication properties of weighted Sobolev spaces (see e.g.

Lemma 14 in [6]) that

Ψ(ABC
FκD)F ∈ H∞−3/2,

so that, in fact, I1 <∞.

We now look at the boundedness of I2. By construction and due to the asymp-

totic conditions (3.44a)-(3.44d), one can choose asymptotically Cartesian coordinates
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and orthonormal frames on the asymptotic ends such that the approximate Killing spinor

and Maxwell spinor satisfy

κAB = ∓
√

2

3
xAB + o∞

(
r1/2

)
φAB =

q√
2r3

xAB + o∞

(
r−5/2

)

Therefore,

ΘAB = κ(A
QφB)Q

= ∓ q

3r3
x(A

QxB)Q + o∞

(
r−3/2

)
= o∞

(
r−3/2

)

and so ΘAB ∈ H∞−3/2, and I2 <∞.

Finally, to show the boundedness of I3, note that in the asymptotically Cartesian

coordinates and orthonormal frames used above, we have

(
κABκ

AB
)2

=
4

81
r4 + o∞

(
r−7/2

)
φABφ

AB =
q2

2r4
+ o∞

(
r−9/2

)

and so the quantity Q satisfies

Q2 =
2

81
q2 + o∞

(
r−1/2

)

Taking a derivative, one obtains

DABQ2 = o∞

(
r−3/2

)

and therefore DABQ2 ∈ H∞−3/2 and I3 <∞.

Remark 23. As coordinate-invariant functions on the hypersurface S, dependent on
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the curvature of S, they may be related to topological invariants of the sub-manifold -

for example, Chern classes or other characteristic classes.

The integrals J , I1, I2 and I3 are then used to define the following geometric invariant:

I = J + I1 + I2 + I3. (3.51)

Combining all of the results obtained so far gives the main result of this chapter:

Theorem 10. Let (S,h,K,E,B) denote a smooth asymptotically Euclidean initial

data set for the Einstein-Maxwell equations satisfying the on each of its two asymptotic

ends the decay conditions (3.44a)-(3.44d) with non-vanishing mass and electromagnetic

charge. Let I be the invariant defined by equation (3.51) where κAB is the unique solution

to equation (3.43) with asymptotic behaviour at each end given by (3.47). The invariant I

vanishes if and only if (S,h,K,E,B) is locally an initial data set for the Kerr-Newman

spacetime.

Proof. The proof follows the same strategy of Theorem 28 in [6]. It follows from the

assumptions that if I = 0 then the electrovacuum Killing spinor data equations (3.40a)-

(3.40d) are satisfied on the whole of the hypersurface S. Thus, from Theorem 8 the

development of the electrovacuum initial data (S,h,K,E,B) will have a Killing spinor,

at least on a slab.

Now, the idea is to make use of Theorem 5 to conclude that the development will

be the Kerr-Newman spacetime. For this, one has to conclude that the spinor ξAA′ ≡

∇QAκBQ is Hermitian so that it corresponds to the spinorial counterpart of a real Killing

vector. By assumption, it follows from the expansions (3.48a)-(3.48c) that

ξ − ξ̂ = o∞(r−1/2), ξAB + ξ̂AB = o∞(r−1/2).

Together, the last two expressions correspond to the Killing initial data for the imagi-
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nary part of ξAA′ – thus, the imaginary part of ξAA′ goes to zero at infinity. It is well

known that for electrovacuum spacetimes there exist no non-trivial Killing vectors of

this type [12, 16]. Thus, ξAA′ is the spinorial counterpart of a real Killing vector. By

construction, ξAA′ tends, asymptotically, to a time translation at infinity. Accordingly,

the development of the electrovacuum initial data (S,h,K,E,B) contains two asymp-

totically stationary flat endsM∞ andM′∞ generated by the Killing spinor κAB. As the

Komar mass and the electromagnetic charge of each end is, by assumption, non-zero,

one concludes from Theorem 5 that the development (M, g,F ) is locally isometric to

the Kerr-Newman spacetime.

3.8 Conclusions

As a natural extension to the vacuum case described by Bäckdahl and Valiente Kroon [6],

the formalism presented above for the electrovacuum case has similar applications and

possible modifications. For example, the use of asymptotically hyperboloidal rather than

asymptotically flat slices can now be analysed for the full electrovacuum case, applying

to the more general Kerr-Newman solution. In the next chapter, the arguments made

here will be modified to obtain necessary and sufficient conditions for the existence of a

Killing spinor in the future development of a pair of intersecting null hypersurfaces, as

opposed to a asymptotically flat spacelike hypersurface.

A motivation for the above analysis was also to provide a way of tracking the deviation

of initial data from exact Kerr-Newman data in numerical simulations. However, in order

to be a useful tool, one would still have to show that the geometric invariant is suitably

behaved under time evolution (such as monotonicity). As highlighted in [6], a major

problem is that it is hard to find a evolution equation for κAB such that the elliptic

equations (3.43) is satisfied on each leaf in the foliation. If these issues can be resolved,

then this formalism may be of some use in the study of non-linear perturbations of the

Kerr-Newman solution and the black hole stability problem.



Chapter 4

Killing spinor data on

non-expanding horizons

4.1 Introduction

In a paper by Rácz [47], it is shown that a spacetime admitting a pair of non-expanding,

shear-free null hypersurfaces H1 and H2 (the union of which is shown to form a bifurcate

Killing horizon in Corollary 6.1) can be uniquely determined in the domain of dependence

of H1∪H2, once data has been prescribed on the intersection surface Z = H1∩H2. This

set-up provides the basis for the characteristic initial value problem, and is useful for

investigating the behaviour of a black hole spacetime given data only on the horizons.

In fact, the set-up described in [47] can be considered to describe a general class of

stationary distorted electrovacuum black hole spacetimes – within the class of solutions

to the Einstein-Maxwell equations. Of course, the Kerr-Newman family of solutions is

an example of a family of exact solutions to the Einstein-Maxwell equations satisfying

these conditions, and so belongs to this class of solutions. One can ask what further

conditions are necessary to impose on the horizons in order to single out the Kerr-

Newman family from the more general class, and how restrictive these conditions are.

118
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Furthermore, as the only restriction on spacetimes in the class of distorted black hole

spacetimes is the presence of a single one-parameter group is isometries (generated by

the Killing vector associated to the bifurcate Killing horizon), the class is expected to

contain not just the Kerr-Newman solution but a large number of ‘nearby’ and similar

solutions. In particular, no assumption of made on the asymptotic behaviour of the

spacetime - only the geodesic completeness of the generators of the null hypersurfaces is

necessary. Therefore, this class is expected to contain the asymptotically flat stationary

electrovacuum spacetimes established by black hole uniqueness theorems, along with

spacetimes with other asymptotic properties.

In order to investigate possible conditions on H1 ∪H2, we can rely on the previously

established characterisation of the Kerr solution by Killing spinors. In Chapter 3, this

characterisation was used to identify the Kerr-Newman family of solutions exactly from

a larger class. Here, it is shown that it is possible to guarantee the existence of a Killing

spinor in the domain of dependence of the non-expanding horizonsH1∪H2 by prescribing

data for the Killing spinor, and this data need only be given on the intersection surface

Z. The only restriction on the background spacetime is the prescription of the curvature

component Ψ2 in terms of this initial data.

In this chapter, the analysis will be restricted to the vacuum case, attempting to

identify the Kerr family of solutions to the Einstein equations from the general class of

stationary distorted vacuum black hole spacetimes. A set of conditions will be found

which must be satisfied on the intersection surface Z to ensure the existence of a Killing

spinor on a neighbourhood of Z in the interior of the black hole, and then investigate

further conditions which must be given there to single out the Kerr solution. A key

obstacle is the fact that the natural asymptotic flatness conditions used in results like

Theorem 5 and Theorem 10 cannot be used in the characteristic problem; constants

arising from local results must either be determined by hand, or by some other criterion.

The main result of this chapter (given in Theorem 14) can be formulated as:
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Theorem. Let (M, g) be a vacuum distorted black hole. Given a spin basis {oA, ιA}

on the bifurcation surface Z, assume that there exist constants c, M ∈ C such that the

following relations hold on Z:

κ0 = κ2 = 0,

ð2κ1 = ð2κ1 = 0,

κ31Ψ2 = M,

κ1 + κ1 = c,

ððκ1 + 2Ψ2κ1 ∈ R

where κ0, κ1, κ2 are the basis components of a spinor κAB with respect to the spin basis

{oAιA}. Then, there exist two complex constants c and l such that

H2 = −l(c− χ)4

in a neighbourhood O of the bifurcation surface, where H2 = HabHab is the contraction

of the self-dual Killing form with itself (see section 2.2.4 for the full definition) and χ is

the Ernst potential (see section 2.2.5.1). Furthermore, if c = 1 and l is real and positive,

then (O, g) is locally isometric to a member of the Kerr family of spacetimes.

Also, as in the previous chapter, the calculations in this chapter will make extensive

use of the xAct suite of tensor computer algebra packages, in order to speed up the

computation of large and unwieldy expressions. All of these calculations could be done

by hand; the software merely allows them to be done in an efficient and intuitive manner.

The details of the software are given in [43].

Overview

This chapter is structured as follows: first, in Section 4.2, the construction of the char-

acteristic problem given in [47] is summarised. This construction will be used to define
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the distorted black holes considered in this chapter. In Section 4.3, the wave equation

for the Killing spinor is decomposed into equations intrinsic to the horizons, providing a

system of transport equations for the components of the Killing spinor. Furthermore, by

finding a system of homogeneous wave equations for a collection of zero-quantity fields

and imposing appropriate initial data for the system, further conditions (differential and

algebraic constraints) can be found for the components of the Killing spinor and their

first derivatives on the bifurcate horizon H1 ∪ H2. In Section 4.4, these conditions are

investigated further; it is shown that the conditions intrinsic to the bifurcation surface

Z imply a specific form for the Killing spinor components. Furthermore, the constraints

intrinsic to H1 or H2 are shown to satisfy ordinary differential equations along the gener-

ators of the relevant horizons, and so can be replaced with conditions on the bifurcation

surface, if not becoming redundant. In this way, conditions on the extended horizon

construction are reduced to conditions only on the bifurcation surface Z. In Section 4.5,

the additional conditions required to fulfil the assumptions of Proposition 2 are inves-

tigated; in particular, it is shown that the requirement that the Killing vector ξAA′ is

Hermitian can be encoded as initial data on H1 ∪H2. These conditions can be reduced

to conditions only on the bifurcation surface; this puts further restrictions on the form

of the Killing spinor components on Z. A detailed version of the main result is given

in subsection 4.5.3. In Section 4.6, an explicit expression for the only non-trivial Killing

spinor component is given, satisfying the required conditions on Z; in doing so, a restric-

tion on the geometry of the bifurcation surface is obtained. Lastly, Section 4.7 illustrates

how the previously obtained conditions on Z are insufficient to completely isolate the

Kerr family from the larger class of ‘distorted’ black holes. Explicitly, it is shown that

‘distorted’ black holes with metrically spherical bifurcation surfaces include spacetimes

other than the Schwarzschild solution, thereby showing that the Kerr family is a strict

subset of the class of ‘distorted’ black hole spacetimes.
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Recap of notation and conventions

In what follows (M, g) will denote a vacuum spacetime. The metric g is assumed to have

signature (+,−,−,−). The Latin letters a, b, . . . are used as abstract tensorial spacetime

indices while the Greek letters µ, ν, . . . denote spacetime indices. The script letters

A, B, . . . are used to denote angular coordinates. The Latin capital letters A, B, . . . are

used as abstract spinorial indices.

Systematic use of the standard NP and GHP formalisms as discussed in [45, 55] will

be used in this chapter, along with standard NP and GHP notation and conventions. In

particular, if η is a smooth scalar on a 2-surface Z with spin-weight s, the action of the

ð and ð operators on η is defined by

ðη = δη + s (α− β) η , ðη = δ η − s (α− β) η . (4.2)

One also has that

(ðð− ðð) η = sKG η , (4.3)

where KG denotes the Gaussian curvature of Z.

An alternative representation of the ð and ð̄ operators is given via the construction

in Section 4.14 of [45]. In particular, by choosing an arbitrary holomorphic function z

the 2-metric σ on Z can be given as

σ = − 1

PP

(
dz ⊗ dz̄ + dz̄ ⊗ dz

)
, (4.4)

where P is a complex function on Z. For example, if Z is isometric to the unit sphere,

then P = 1
2(1 + zz); this is used later in section 4.7, when the implications of Z being

isometric to S2 with the round metric is investigated. More general 2-metrics that are

conformally related to the round metric (i.e. σ = Ω2σS2) will have their corresponding

P functions rescaled by the conformal factor Ω.
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H2H1

O

Z

Figure 4.1: The set up for the characteristic initial value problem. The two
non-expanding, shear-free null hypersurfaces H1 and H2 form a
bifurcate Killing horizon, intersecting at the spacelike 2-surface
Z. O represents a neighbourhood of Z in D(H1 ∪H2).

In terms of the holomorphic coordinate function z on Z, the operators ð and ð̄ –

acting on a scalar η of spin-weight s – are defined as (see (4.14.3)-(4.14.4) in [45])

ðη ≡ PP−s ∂
∂z

(
P
s
η
)
, ð̄η ≡ PP s ∂

∂z

(
ηP−s

)
. (4.5)

As the complex coordinates z and z̄ have zero spin-weight, it is easy to verify that

ðz = P, ðz = 0 ,

and that

ðP = 0 , ðP = 0 .

4.2 The characteristic initial value problem on expansion

and shear-free hypersurfaces

In [47], by adopting and slightly generalising results of Friedrich in [26], a systematic

analysis of the null characteristic initial value problem for the Einstein-Maxwell equations

in terms of the Newman-Penrose formalism was performed. In particular, a procedure to

obtain a system of reduced evolution equations forming a first order symmetric hyperbolic
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system was outlined. Moreover, it was shown that the solutions to these evolution

equations imply, in turn, a solution to the full Einstein-Maxwell system provided that the

inner (constraint) equations on the initial null hypersurfaces hold. For this setting, the

theory for the characteristic initial value problem developed in [48] applies and ensures

the local existence and uniqueness of a solution of the reduced evolution equations.

These general results were then used to investigate electrovacuum spacetimes (M, g,F )

possessing a pair of null hypersurfaces H1 and H2 generated by expansion and shear-free

geodesically complete null congruences, with intersection on a two dimensional spacelike

hypersurface Z ≡ H1 ∩H2. The configuration formed by H1 and H2 constitute a bifur-

cate horizon. In general, the freely specifiable data on Z does not possess any symmetry

in addition to the horizon Killing vector (implied by the non-expanding character of the

horizons). Thus, these spacetimes constitute the generic class of stationary distorted

electrovacuum spacetimes. The key observation resulting from the analysis in [47] is, for

the vacuum case, summarised in the following:

Theorem 11. Suppose that (M, g) is a vacuum spacetime with a vanishing Cosmolog-

ical constant possessing a pair of null hypersurfaces H1 and H2 generated by expansion

and shear-free geodesically complete null congruences, intersecting on a 2-dimensional

spacelike hypersurface Z ≡ H1 ∩ H2. Then, the metric g is uniquely determined (up

to diffeomorphisms) on a neighbourhood O of Z contained in the domain of dependence

D(H1 ∩ H2) of H1 and H2, once a complex vector field ζA (determining the induced

metric σ on Z) and the spin connection coefficient τ are specified on Z.

4.2.1 Summary of the construction

Further information regarding the construction of the characteristic setup in [47] will

be required for the analysis in this chapter. Throughout, let (M, g) denote a vacuum

spacetime and let H1 and H2 denote two null hypersurfaces in (M, g) intersecting on a

spacelike 2-surface Z.



Chapter 4. Killing spinor data on non-expanding horizons 125

Remark 24. In the rest of this section, the topology of Z will not be relevant for the

discussion. The situation will, however, change when attempting to single out the Kerr

spacetime.

Let na denote a smooth future-directed null vector on Z tangent to H2, which is

extended to H2 by requiring it to satisfy nb∇bna = 0 on H2. Moreover, let u be an

affine parameter along the null generators of H2, so that u = 0 on Z and Zu are the

associated 1-parameter family of smooth cross sections of H2. Choose a further null

vector la as the unique future-directed null vector field on H2 which is orthogonal to

the 2-dimensional cross sections Zu and satisfies the normalisation condition nal
a = 1.

Consider now the null geodesics starting on H2 with tangent la. Since H2 is assumed

to be smooth and the vector fields na and la are smooth on H2 by construction, these

geodesics do not intersect in a sufficiently small open neighbourhood O ⊂ M of H2.

Let r denote the affine parameter along the null geodesics starting on H2 with tangent

la, chosen such that r = 0 on H2. By construction one has that la = (∂/∂r)a, and the

affine parameter defines a smooth function r : O → R. The function H2 → R defined by

the affine parameter of the integral curves of na can be extended to a smooth function

u : O → R by requiring it to be constant along the null geodesics with tangent la.

This construction is complemented by choosing suitable coordinates (xA) on patches

of Z and extending them to O by requiring them to be constant along the integral

curves of the vectors la and na. In this manner one obtains a system of Gaussian null

coordinates (xµ) = (u, r, xA) on patches of O. In each of these patches the spacetime

metric g takes the form

g = g00du⊗ du+ (du⊗ dr + dr ⊗ du)

+ g0A(du⊗ dxA + dxA ⊗ du) + gABdx
A ⊗ dxB,
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where g00, g0A, gAB are smooth functions of the coordinates (xµ) such that

g00 = g0A = 0, on H2,

and gAB is a negative definite 2× 2 matrix. Observe that by construction

H1 ∩ O = {(xµ) ∈ O | u = 0},

H2 ∩ O = {(xµ) ∈ O | r = 0}.

In the following analysis, it will be convenient to consider the components of the con-

travariant form of the metric associated to the line element given above. A calculation

shows that

(gµν) =


0 1 0

1 g11 g1B

0 gA1 gAB

 .

The metric functions g11, g1A and gAB can be conveniently parametrised in terms of

real-valued functions U , XA and complex-valued functions ω, ζA on O such that

g11 = 2(U − ωω), g1A = XA − (ωζA + ωζ
A

), gAB = −(ζAζ
B

+ ζBζ
A

).

Accordingly, setting

lµ = δ1
µ, nµ = δ0

µ + Uδ1
µ +XAδA

µ, mµ = ωδ1
µ + ζAδA

µ,

one obtains a complex (NP) null tetrad {la, na, ma, ma} in O. As a result of the

vanishing of g00 and g0A on H2, one has that

U = XA = ω = 0, on H2.

It follows from the previous discussion that ma and ma are everywhere tangent to the

sections Zu of H2. In general, the complex null vectors ma and ma are not parallelly



Chapter 4. Killing spinor data on non-expanding horizons 127

propagated along the null generators of H2.

Associated to the NP null tetrad {la, na, ma, ma} in O one has the directional deriva-

tives

D =
∂

∂r
,

∆ =
∂

∂u
+ U

∂

∂r
+XA

∂

∂xA
,

δ = ω
∂

∂r
+ ζA

∂

∂xA
.

Remark 25. By construction, one has that D is an intrinsic derivative to H1 pointing

along the null generators of this hypersurface. Similarly, ∆ is intrinsic to H2 and points

in the direction of its null generators. Finally, {δ, δ̄} are differential operators which

on H2 are intrinsic to the sections of constant u, Zu. Observe, however, that while δ

restricted to H1 is still intrinsic to the null hypersurface, it is not intrinsic to the sections

of constant r.

The NP null tetrad constructed in the previous paragraph can be specialised fur-

ther to simplify the associate spin-connection coefficients. By parallelly propagating

{la, na, ma, ma} along the null geodesics with tangent la one finds that

κ = π = ε = 0, (4.6a)

ρ = ρ, τ = α+ β, everywhere on O. (4.6b)

These equations arise from the application of the commutators of the directional deriva-

tives to the chosen coordinate functions. Moreover, from the condition nb∇bna = 0 on

H2 it follows that

ν = 0 on H2. (4.7)

Also, using that u is an affine parameter of the generators of H2 one finds that γ + γ =

0 along these generators. One can specialise further by suitably rotating the vectors
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{ma, ma} so as to obtain

γ = 0, on H2. (4.8)

4.2.1.1 Solving the NP constraint equations

The NP Ricci and Bianchi identities split into a subset of intrinsic (constraint) equations

to H1∪H2 and a subset of transverse (evolution) equations. In [47] the gauge introduced

in the previous subsection was used to systematically analyse the constraint equations on

H1∪H2 with the aim of identifying the freely specifiable data on this pair of intersecting

hypersurfaces under the assumption that it is expansion and shear-free. The results

from this analysis can be conveniently presented in the form of a table – see Table 4-A,

obtained from [47].

H1 Z H2

DζA = 0 ζA (data) ∆ζA = 0

ω = −r τ ω = 0 ω = 0 (geometry)

XA = r [τ ζ
A

+ τ ζA] XA = 0 XA = 0 (geometry)

U = −r2
[

2 τ τ + 1
2

(
Ψ2 + Ψ2

)]
U = 0 U = 0 (geometry)

ρ = 0 ρ = 0 ρ = u
(
δτ − 2α τ −Ψ2

)
σ = 0 σ = 0 σ = u ( δτ − 2β τ )

Dτ = 0 τ (data) ∆τ = 0

Dα = Dβ = 0 α, β, τ = α+ β ∆α = ∆β = 0

γ = r ( τ α+ τ β + Ψ2 ) γ = 0 γ = 0 (gauge)

µ = rΨ2 µ = 0 µ = 0

λ = 0 λ = 0 λ = 0

ν = 1
2 r

2
(
δΨ2 + τ Ψ2

)
ν = 0 ν = 0 (gauge)

Ψ0 = 0 Ψ0 = 0 Ψ0 = 1
2 u

2 Ψ̃0

Ψ1 = 0 Ψ1 = 0 Ψ1 = u ( δΨ2 − 3 τ Ψ2 )

DΨ2 = 0 ζA, τ → α, β,Ψ2 ∆Ψ2 = 0

Ψ3 = r δΨ2 Ψ3 = 0 Ψ3 = 0

Ψ4 = 1
2 r

2
(
δ
2
Ψ2 + 2α δΨ2

)
Ψ4 = 0 Ψ4 = 0

Table 4-A: The full initial data set on H1 ∪H2 (obtained from [47]).

Remark 26. The vacuum field equations and the Bianchi identities written in Newman-

Penrose form imply the following relations for the components of the Weyl curvature
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spinor:

Ψ2 = −δα+ δβ + αα− 2αβ + β β (4.9)

Ψ̃0 = δ2Ψ2 − (7 τ + 2β) δΨ2 + 12 τ2Ψ2 .

Remark 27. As already mentioned, the following discussion will be mostly interested

in the situation where Z is diffeomorphic to a unit 2-sphere, i.e. Z ≈ S2. From the

definition of the operators ð and ð as given in (4.2), along with those of the NP spin

connection coefficients α and β, it follows that the connection on Z is encoded in the

combination α − β. As discussed in [47], given the freely specifiable data ζA and τ one

can readily compute the NP coefficients α, β. These, in turn, can be used, together with

the NP Ricci equation (4.9), to determine the Weyl spinor component Ψ2 on Z: from

(4.9), it is straightforward to deduce

2 Re(Ψ2) = Ψ2 + Ψ2 = −δ (α− β )− δ (α− β ) + 2 (α− β ) (α− β ). (4.10)

This implies that the real part of Ψ2 – in accordance with the fact that −2 Re(Ψ2) is the

Gaussian curvature K of Z (see, e.g. Proposition 4.14.21 in [45]) – depends only on the

combination α − β, which is completely intrinsic to Z. Analogously, by making use of

(4.9), the spin coefficient τ and the imaginary part of Ψ2 can be shown to be related via

2 i Im(Ψ2) = Ψ2 −Ψ2 = δτ − δτ − 2
(
β τ − β τ

)
. (4.11)

4.3 The Killing spinor data conditions for the characteris-

tic initial problem

In this section, initial data for a set of wave equations will be found on the bifurcated

horizons H1 ∪ H2, guaranteeing the existence of a Killing spinor in a neighbourhood of

the bifurcation surface Z. Once the wave equation system has been established, the
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required initial data conditions for the zero-quantities will be decomposed in a natural

way to obtain conditions on the components of the Killing spinor candidate κAB.

4.3.1 Killing spinors

As this chapter considers only vacuum spacetimes, the vector ξAA′ constructed from

a spinor κAB satisfying the Killing spinor equation (2.1) via the definition (2.5) is in

fact a Killing vector. Furthermore, using the definitions of the zero quantities HA′ABC

and SAA′BB′ given in (3.4a) and (3.4b) respectively, a calculation (performed for the

electrovacuum case in section 3.3, and simplifying when the electromagnetic terms are

set to zero)) shows the following:

Proposition 5. Let κAB be a solution to equation (3.3b). Then the spinor fields HA′ABC

and SAA′BB′ satisfy the system of wave equations

�HA′ABC = 4
(
Ψ(AB

PQHC)PQA′ +∇(A
Q′SBC)Q′A′

)
, (4.12a)

�SAA′BB′ = −∇AA′(ΨB
PQRHB′PQR)−∇BB′(ΨA

PQRHA′PQR)

+2ΨAB
PQSPA′QB′ + 2ΨA′B′

P ′Q′SAP ′BQ′ . (4.12b)

Remark 28. As the above equations constitute a system of homogeneous linear wave

equations for the fields HA′ABC and SAA′BB′ , it follows that they readily imply conditions

for the existence of a Killing spinor in the development of a given initial value problem for

the vacuum Einstein field equations, when sufficient appropriate initial data is provided.

In Chapter 3, this initial data (for a more general system of wave equations) was found

on a spacelike hypersurface; the calculations performed there can be adapted to the

current setting of a characteristic initial data set – see also [28].
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4.3.2 Construction of the Killing spinor candidate

As with the case of a spacelike initial hypersurface, it will prove useful to investigate the

characteristic initial value problem for the wave equation(3.3b), governing the evolution

of the Killing spinor candidate κAB. An approach to the formulation of the characteristic

initial value problem for wave equations on intersecting null hypersurfaces H1 and H2

has been analysed in [48]. This discussion follows the ideas of this analysis closely.

4.3.2.1 Basic set-up

Let {oA, ιA} denote a spin dyad normalised according to oAι
A = 1. The spinor κAB can

be written as

κAB = κ2oAoB − 2κ1o(AιB) + κ0ιAιB.

so that

κ0 ≡ κABoAoB, κ1 ≡ κABoAιB, κ2 ≡ κABιAιB.

It can be readily verified that the scalars κ2, κ1 and κ0 have, respectively, spin weights

−1, 0, 1 – i.e. they transform as

κj 7→ e−2(j−1)iϑκj

under a rotation {oA, ιA} 7→ {eiϑoA, e−iϑιA}.

A direct decomposition of the wave equation (3.3b) using the NP formalism readily

yields the following equations for the independent components κ0, κ1 and κ2 of the spinor
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κAB:

D∆κ2 + ∆Dκ2 − δδκ2 − δδκ2

+ (µ+ µ+ 3γ − γ)Dκ2 − (ρ+ ρ)∆κ2 + (τ − 3α− β)δκ2

+ (α− 5β + τ)δκ2 + (Ψ2 + 2αα− 8αβ − 2ββ − 2γρ+ 2µρ

− 2γρ+ 2λσ + 2ατ + 2βτ + 2Dγ − 2δα− 2δβ)κ2 + (Ψ4 − 4λµ)κ0 = 0, (4.13a)

D∆κ1 + ∆Dκ1 − δδκ1 − δδκ1

− 2τDκ2 + (µ+ µ− γ − γ)Dκ1 + 2νDκ0 − (ρ+ ρ)∆κ1

+ 2ρδκ2 + (α− β + τ)δκ1 − 2λδκ2 + 2σδκ2 + (α− β + τ)δκ1

− 2µδκ0 + (−Ψ1 − αρ+ 3βρ+ ασ + βσρτ − στ −Dτ + δρδσ)κ2

+ (−Ψ3 + αλ+ βλ+ 3αµ− βµ− νρ− νρ+ λτ + µτ +Dν

− δλ− δµ)κ0 = 0, (4.13b)

D∆κ0 + ∆Dκ0 − δδκ0 − δδκ0

+ (µ+ µ− 5γ − γ)Dκ0 − (ρ+ ρ)∆κ0 + (5α− β + τ)δκ0

+ (α+ 3β + τ)δκ0 + (Ψ2 − 2αα− 8αβ + 2ββ + 2γρ+ 2µρ+ 2γρ

+ 2λσ − 2ατ − 2βτ − 2Dγ + 2δα+ 2δβ)κ0 + (Ψ0 − 4ρσ)κ2 = 0. (4.13c)

The above expressions are completely general: no assumption on the spacetime (other

than satisfying the vacuum field equations) or the gauge has been made.

Remark 29. At this stage, there is still considerable freedom in the choice of the spin

dyad {oA, ιA}. A natural choice is that of a spin dyad {oA, ιA} adapted to the NP null

tetrad {la, na, ma,ma} – if {lAA′ , nAA′ , mAA′ ,mAA′} denote the spinorial counterparts

of the null tetrad, one has the correspondences

lAA
′

= oAoA
′
, nAA

′
= ιAιA

′
, mAA′ = oAιA

′
, mAA′ = ιAoA

′
,

and the gauge conditions (4.6a)-(4.6b), (4.7) and (4.8) hold when computing the corre-

sponding NP spin-connection coefficients by means of derivatives of the spin dyad.
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4.3.2.2 The transport equations on H1

Consider now the restriction of equations (4.13a)-(4.13c) to the null hypersurfaceH1 with

tangent la. It follows then that D is a directional derivative along the null generators

of H1, while ∆ is a directional derivative transversal to H1. Using the NP commutator

[D,∆] equation to rewrite ∆Dκ0, ∆Dκ1, ∆Dκ2 in terms of D∆κ0, D∆κ1 and D∆κ2,

equations (4.13a)-(4.13c) take the form:

2D∆κ0 − δδκ0 − δδκ0 + (α+ 3β)δκ0 + (5α− β)δκ0 + (µ+ µ− 4γ)Dκ0

+ 4τDκ1 + 2κ1Dτ + (Ψ2 − 2αα− 8αβ + 2ββ − 2ατ − 2βτ

− 2Dγ + 2δα+ 2δβ)κ0 = 0, (4.14a)

2D∆κ1 − δδκ1 − δδκ1 − 2νDκ0 + (µ+ µ)Dκ1 + 2τDκ2 + (α− β)δκ1

+ 2µδκ0 + (α− β)δκ1 + (Ψ3 − 3αµ+ βµ− µτ −Dν + δµ)κ0

− 2Ψ2κ1 + κ2Dτ = 0, (4.14b)

2D∆κ2 − δδκ2 − δδκ2 − 4νDκ1 + (4γ + µ+ µ)Dκ2 − (3α+ β)δκ2

+ 4µδκ1 + (α− 5β)δκ2 + (Ψ2 + 2αα− 8αβ − 2ββ + 2ατ + 2βτ

+ 2Dγ − 2δα− 2δβ)κ2 + (2αµ− 2Ψ3 + 2βµ− 2µτ − 2Dν + 2δµ)κ1

+ Ψ4κ0 = 0. (4.14c)

If the value of the components κ0, κ1, κ2 are known on H1, then the above equations

can be read as a system of ordinary differential equations for the transversal derivatives

∆κ0, ∆κ1, ∆κ2,

along the null generators of H1. Initial data for these transport equations is naturally

prescribed on Z.
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4.3.2.3 The transport equations on H2

Similarly, one can consider the restriction of equations (4.13a)-(4.13c) to the null hyper-

surface H2 with tangent na. Thus, ∆ is a directional derivative along the null generators

of H2, δ and δ are intrinsic derivatives while D is transversal to H2. In this case one uses

the NP commutator [D,∆] to rewrite D∆κ0, D∆κ1, D∆κ2 in terms of ∆Dκ0, ∆Dκ1,

∆Dκ2 and lower order terms so that equations (4.13a)-(4.13c) take the form

2∆Dκ0 − δδκ0 − δδκ0 − (ρ+ ρ)∆κ0 + 4τDκ1 + (5α− β + 2τ)δκ0+

(α+ 3β + 2τ)δκ0 + 4σδκ1 − 4ρδκ1 + (Ψ2 − 2αα− 8αβ + 2ββ

− 2ατ − 2βτ + 2δα+ 2δβ)κ0 + (2αρ+ 2βρ+ 6ασ − 2βσ − 2ρτ

+ 2στ + 2Dτ − 2δρ− 2δσ − 2Ψ1)κ1 + (Ψ0 − 4ρσ)κ2 = 0, (4.15a)

2∆Dκ1 − δδκ1 − δδκ1 − (ρ+ ρ)∆κ1 + 2τDκ2 + (α− β + 2τ)δκ1

+ (α− β + 2τ)δκ1 − 2ρδκ2 + 2σδκ2 − 2Ψ2κ1

+ (Ψ1 − αρ− 3βρ− ασ − βσ − ρτ + στ +Dτ − δρ− δσ)κ2 = 0, (4.15b)

2∆Dκ2 − δδκ2 − δδκ2 − (ρ+ ρ)∆κ2 + (2τ − 3α− β)δκ2 + (α− 5β + 2τ)δκ2

+ (Ψ2 + 2αα− 8αβ − 2ββ + 2ατ + 2βτ − 2δα− 2δβ)κ2 = 0. (4.15c)

If the values of κ0, κ1, κ2 are known on H2 then the above equations can be read as a

system of ordinary differential equations for the transversal derivatives

Dκ0, Dκ1, Dκ2,

along the null generators of H2. Initial data for these transport equations is naturally

prescribed on Z.
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4.3.2.4 Summary: existence of the Killing spinor candidate

The discussion of the previous subsections combined with Theorem 1 from [48] – see also

[35] – allows the formulation of the following existence result:

Proposition 6. Let (M, g) denote a spacetime satisfying the assumptions of Theorem

11. Then, given a smooth choice of fields κ0, κ1 and κ2 on H1 ∪ H2, there exists a

neighbourhood O of Z in D(H1 ∪ H2) on which the wave equation (3.3b) has a unique

solution κAB.

Proof. Once a basis {oA, ιA} has been chosen on H1 ∪H2, the spinor κAB is determined

by the values of κ0, κ1, κ2. Furthermore, the equation for κAB (3.3b) is a quasilinear wave

equation of the form needed for Theorem 1 of [48]. By the statement of that theorem,

the result follows.

Remark 30. The assumption of smoothness of the fields κ0, κ1 and κ2 requires, in

particular, that the limits of these fields as one approaches to Z on either H1 or H2

coincide.

4.3.3 The NP decomposition of the Killing spinor data conditions

The conditions on the initial data for the Killing spinor candidate κAB constructed in

the previous section which ensure that it is, in fact, a Killing spinor follow from requiring

that the propagation system (4.12a)-(4.12b) of Proposition 5 has as a unique solution –

the trivial (zero) one.

The purpose of this section is to analyse the characteristic initial value problem for

the Killing spinor equation propagation system (4.12a)-(4.12b).
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4.3.3.1 Basic observations

We are interested in solutions to the system (4.12a)-(4.12b) ensuring the existence of a

Killing spinor on D(H1∪H2). The homogeneity of these equations on the fields HA′ABC

and SAA′BB′ allows to formulate the following result:

Lemma 19. Let (M, g) denote a spacetime satisfying the assumptions of Theorem 11.

Further, assume that

HA′ABC = 0, SAA′BB′ = 0 on H1 ∪H2.

Then there exists a neighbourhood O of Z in D(H1 ∪ H2) on which the HA′ABC and

SAA′BB′ vanish.

Proof. The result follows from using the methods of Section 4.3.2 on the equations

(4.12a)-(4.12b), and the uniqueness of the solutions to the characteristic initial value

problem.

From the above lemma and the observations in Section 4.3.1 one directly obtains the

following result concerning the existence of Killing spinors on D(H1 ∪H2):

Proposition 7. Let (M, g) denote a spacetime satisfying the assumptions of Theorem

11. Assume that initial data κ0, κ1, κ2 on H1 ∪H2 for the wave equation (3.3b) can be

found such that

HA′ABC = 0, SAA′BB′ = 0 on H1 ∪H2.

Then the resulting Killing spinor candidate κAB is, in fact, a Killing spinor in a neigh-

bourhood O of Z on D(H1 ∪H2).

Remark 31. A straightforward computation shows that the condition

HA′ABC = 0
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is equivalent to the equations

Dκ0 − 2εκ0 + 2κκ1 = 0, (4.16a)

δκ0 − 2βκ0 + 2σκ1 = 0, (4.16b)

δκ0 + 2Dκ1 − 2πκ0 − 2ακ0 + 2κ1ρ+ 2κκ2 = 0, (4.16c)

∆κ0 + 2δκ1 + 2σκ2 − 2µκ0 + 2τκ1 − 2γκ0 = 0, (4.16d)

Dκ2 + 2δκ1 + 2ρκ2 − 2λκ0 − 2πκ1 + 2εκ2 = 0, (4.16e)

δκ2 + 2∆κ1 + 2τκ2 + 2βκ2 − 2µκ1 − 2νκ0 = 0, (4.16f)

δκ2 + 2ακ2 − 2λκ1 = 0, (4.16g)

∆κ2 + 2γκ2 − 2νκ1 = 0. (4.16h)

Remark 32. Defining the basis coefficients of the Killing vector ξAA′ by

ξAA′ = ξ11′oAoA′ + ξ10′oAιA′ + ξ01′ιAoA′ + ξ00′ιAιA′ ,

equation (2.5) takes the form

ξ11′ = ∆κ1 − δκ2 − 2βκ2 + τκ2 + 2µκ1 − νκ0, (4.17a)

ξ10′ = Dκ2 − δκ1 + 2εκ2 − ρκ2 − 2πκ1 + λκ0, (4.17b)

ξ01′ = δκ1 −∆κ0 + 2γκ0 − µκ0 − 2τκ1 + σκ2, (4.17c)

ξ00′ = δκ0 −Dκ1 − 2ακ0 + πκ0 + 2ρκ1 − κκ2. (4.17d)

If ξAA′ is required to be Hermitian so that it corresponds to the spinorial counterpart of

a real vector ξa then one has the reality conditions

ξ00′ = ξ0′0, ξ11′ = ξ1′1, ξ01′ = ξ1′0, ξ10′ = ξ0′1

A further calculation shows that the equation SAA′BB′ = 0 takes, in NP notation, the
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form:

Dξ00′ − ξ00′ε− ξ00′ε− ξ10′κ− ξ01′κ = 0, (4.18a)

∆ξ11′ + ξ11′γ + ξ11′γ + ξ01′ν + ξ10′ν = 0, (4.18b)

Dξ11′ + ∆ξ00′ − ξ00′γ − ξ00′γ + ξ11′ε+ ξ11′ε+ ξ01′π

+ ξ10′π − ξ10′τ − ξ01′τ = 0, (4.18c)

δξ11′ −∆ξ01′ + αξ11′ + ξ11′β + ξ01′γ − ξ01′γ + ξ10′λ

+ ξ01′µ− ξ00′ν + ξ11′τ = 0, (4.18d)

δξ01′ + ξ01′α− ξ01′β + ξ00′λ− ξ11′σ = 0, (4.18e)

δξ00′ −Dξ01′ − ξ00′α− ξ00′β + ξ01′ε− ξ01′ε+ ξ11′κ

− ξ00′π − ξ01′ρ− ξ10′σ = 0, (4.18f)

δξ11′ −∆ξ10′ + ξ11′α+ ξ11′β − ξ10′γ + ξ10′γ + ξ01′λ

+ ξ10′µ− ξ00′ν + ξ11′τ = 0, (4.18g)

δξ10′ + ξ10′α− ξ10′β + ξ00′λ− ξ11′σ = 0, (4.18h)

δξ10′ + δξ01′ − ξ01′α− ξ10′α+ ξ10′β + ξ01′β + ξ00′µ

+ ξ00′µ− ξ11′ρ− ξ11′ρ = 0, (4.18i)

δξ00′ −Dξ10′ − ξ00′α− ξ00′β − ξ10′ε+ ξ10′ε+ ξ11′κ

− ξ00′π − ξ10′ρ− ξ01′σ = 0. (4.18j)

The equations (4.16a)-(4.16h) and (4.18a)-(4.18j) are valid at any point in the space-

time. When restricting to the bifurcated horizons, these equations are expected to sim-

plify as a result of the gauge conditions and other specific choices made during the set-up

of the characteristic problem - see Table 4-A. Restrictions to the bifurcation surface Z

and ingoing and outgoing null hypersurfaces H1 and H2 will be done successively in the

next few sections.
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4.3.3.2 The condition HA′ABC = 0 on Z = H1 ∩H2

On Z = H1 ∩H2 equations (4.16a)-(4.16h) reduce to:

Dκ0 = 0, (4.19a)

∆κ2 = 0, (4.19b)

δκ0 − 2βκ0 = 0, (4.19c)

∆κ0 + 2δκ1 + 2τκ1 = 0, (4.19d)

2∆κ1 + δκ2 + 2βκ2 + 2τκ2 = 0, (4.19e)

2Dκ1 + δκ0 − 2ακ0 = 0, (4.19f)

Dκ2 + 2δκ1 = 0, (4.19g)

δκ2 + 2ακ2 = 0. (4.19h)

In what follows, regard equations (4.19c) and (4.19h) as intrinsic to Z. Making use of

the operators ð and ð (see (4.2) for their explicit form) these conditions can be concisely

rewritten as

ðκ0 = τκ0, (4.20a)

ðκ2 = −τκ2. (4.20b)

Remark 33. Equations (4.19a)-(4.19h) do not constrain the value of the coefficient

κ1 on Z. Instead, given an arbitrary (smooth) choice of κ1 and coefficients κ0 and κ2

satisfying the equations in (4.20a)-(4.20b), equations (4.19b), (4.19d) and (4.19e) are

regarded as prescribing the initial values of the derivatives ∆κ0, ∆κ1 and ∆κ2 that

need to be provided for the transport equations (4.14a)-(4.14c) along H1. Similarly,

equations (4.19a), (4.19f) and (4.19g) can be used to prescribe the initial values of the

derivatives Dκ0, Dκ1 and Dκ2 which are used, in turn, to solve the transport equations

(4.15a)-(4.15c) along H2.
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4.3.3.3 The condition HA′ABC = 0 on H1

On H1 equations (4.16a)-(4.16h) reduce to:

Dκ0 = 0, (4.21a)

∆κ2 − 2νκ1 + 2γκ2 = 0, (4.21b)

δκ0 − 2βκ0 = 0, (4.21c)

∆κ0 + 2δκ1 − 2(γ + µ)κ0 + 2τκ1 = 0, (4.21d)

2∆κ1 + δκ2 + 2(β + τ)κ2 − 2µκ1 − 2νκ0 = 0, (4.21e)

2Dκ1 + δκ0 − 2ακ0 = 0, (4.21f)

Dκ2 + 2δκ1 = 0, (4.21g)

δκ2 + 2ακ2 = 0. (4.21h)

Equations (4.21a), (4.21f) and (4.21g) are interpreted as propagation equations along

the null generators of H1 which are used to propagate the initial values of κ0, κ1 and

κ2 at Z. In order to understand the role equations (4.21c) and (4.21h), consider the

expressions

D(δκ0 − 2βκ0), D(δκ2 + 2ακ2).

A direct computation using the NP commutators shows that

D(δκ0 − 2βκ0) = −2κ0Dβ

D(δκ2 + 2ακ2) = 2κ2Dα− 2(α− β)δκ1 − 2δ
2
κ1.

Evaluating the Ricci identities on H1 one finds that Dα = Dβ = 0 – see also Table 4-A.

Thus, it follows that

D(δκ0 − 2βκ0) = 0

D(δκ2 + 2ακ2) = −2ð2κ1.
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Accordingly, equation (4.21c) holds along H1 if it is satisfied on Z – this is equivalent

to requiring condition (4.20a) on Z. Observe, however, that in order to obtain the same

conclusion for equation (4.21h) one needs ð2κ1 = 0 on H1.

It remains to consider equations (4.21b), (4.21d) and (4.21e). These prescribe the

value of the transversal derivatives ∆κ0, ∆κ1 and ∆κ2. Recall, however, that from

the discussion of Section 4.3.2 these derivatives satisfy transport equations along the

generators of H1. Thus, some compatibility conditions will arise. Substituting the value

of ∆κ0, given by equation (4.21d) into the transport equation (4.14a), and then using

the NP commutators, NP Ricci identities and equations (4.21a), (4.21f) and (4.21g) to

simplify one obtains the condition

Ψ2κ0 = 0.

Similarly, substituting the value of ∆κ1 given by equation (4.21e) into the transport

equation (4.14b) and proceeding in similar manner one finds the further condition

Ψ3κ0 = 0.

Finally, the substitution of the value of ∆κ2 as given by equation (4.21b) eventually

leads to the condition

Ψ4κ0 + 2Ψ3κ1 − 3Ψ2κ2 = 0.

One can summarise the discussion of this subsection as follows:

Lemma 20. Assume that equations (4.21a), (4.21f) and (4.21g) hold along H1 with

initial data for κ0 and κ2 on Z satisfying equations (4.20a) and (4.20b), respectively,

and that, in addition,

ð2κ1 = 0, Ψ2κ0 = 0, Ψ3κ0 = 0, Ψ4κ0 + 2Ψ3κ1 − 3Ψ2κ2 = 0, on H1.
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Then, one has that

HA′ABC = 0 on H1.

4.3.3.4 The condition HA′ABC = 0 on H2

On H2 equations (4.16a)-(4.16h) reduce to:

Dκ0 = 0, (4.22a)

∆κ2 = 0, (4.22b)

δκ0 − 2βκ0 + 2σκ1 = 0, (4.22c)

∆κ0 + 2δκ1 + 2τκ1 + 2σκ2 = 0, (4.22d)

2∆κ1 + δκ2 + 2(β + τ)κ2 = 0, (4.22e)

2Dκ1 + δκ0 − 2ακ0 + 2ρκ1 = 0, (4.22f)

Dκ2 + 2δκ1 + 2ρκ2 = 0, (4.22g)

δκ2 + 2ακ2 = 0. (4.22h)

In analogy with the analysis on H2, in what follows we regard equations (4.22b), (4.22d)

and (4.22e) as propagation equations for the components κ0, κ1 and κ2 along the gener-

ators of H2. Initial data for these equations is naturally prescribed on Z.

Now, regarding equation (4.22h), a direct computation shows that

∆(δκ2 + 2ακ2) = 0.

Thus, if equation (4.22h) is satisfied on Z then it holds along the generators of H2 – this

equivalent to requiring (4.20b). A similar computation with equation (4.22c) yields the

more complicated relation

∆(δκ0 − 2βκ0 + 2σκ1) = −2ð2κ1 − 2κ2δσ − 3σδκ2 − 2ασκ2.
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Observe that if κ2 = 0 along H2, then the obstruction to the propagation of equation

(4.22c) reduces to the simple condition ð2κ1 = 0 which is somehow complementary to

the condition ð2κ1 = 0 on H1.

It remains to analyse the compatibility of equations (4.22a), (4.22f) and (4.22g) with

the transport equations (4.15a)-(4.15c). Substituting Dκ1, ∆κ0, Dκ0 and δκ0 given by

equations (4.22a), (4.22d), (4.22f) and (4.22c) into equation (4.15a) one obtains after

some manipulations the condition

Ψ0κ2 + 2Ψ1κ1 − 3Ψ2κ0 = 0.

Similarly, after substituting Dκ1, ∆κ1 and Dκ2 given by equations (4.22f), (4.22e) and

(4.22g) into equation (4.15b) one obtains the condition

Ψ1κ2 = 0.

Finally, by substituting Dκ2,∆κ2 and δκ2 given by (4.22g), (4.22b) and (4.22h) into

equation (4.15c), one obtains the condition

Ψ2κ2 = 0.

One can summarise the discussion of this subsection as follows:

Lemma 21. Assume that equations (4.22b), (4.22d) and (4.22e) hold along H2 with

initial data for κ0 and κ2 on Z satisfying conditions (4.20a) and (4.20b), respectively,

and that, in addition,

ð2κ1 + κ2δσ +
3

2
σδκ2 + ασκ2 = 0, Ψ2κ2 = 0, Ψ1κ2 = 0,

Ψ0κ2 + 2Ψ1κ1 − 3Ψ2κ0 = 0, on H2.
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Then, one has that

HA′ABC = 0 on H2.

Remark 34. One can show that the curvature conditions in Lemmas 20 and 21 are in

fact components of the equation

Ψ(ABC
FκD)F = 0.

The other components of this equation are trivially satisfied. As this is a basis inde-

pendent expression, the curvature conditions are satisfied in all spin bases, not just the

parallely propagated one. One can check this by considering Lorentz transformations

and null rotations about la and na, and showing that these conditions are preserved.

The equation above can be shown to be an integrability condition for the Killing spinor

equation, so it is unsurprising to find components of it arising naturally from the analysis.

4.3.3.5 The condition SAA′BB′ = 0 at Z

Using the properties of Z, as given explicitly in Table 4-A, together with the conditions

(4.19a)-(4.19h) implied by the equation HA′ABC = 0 on Z, equations (4.17a)-(4.17d)

reads as

ξ11′ = −3

2
(ðκ2 + τκ2) , (4.23a)

ξ10′ = −3ðκ1 , (4.23b)

ξ01′ = 3ðκ1 , (4.23c)

ξ00′ =
3

2
(ðκ0 − τκ0) , (4.23d)
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while on Z equations (4.18a)-(4.18j) reduce to

Dξ00′ = 0, (4.24a)

∆ξ11′ = 0, (4.24b)

Dξ11′ + ∆ξ00′ − τξ10′ − τξ01′ = 0, (4.24c)

∆ξ01′ − δξ11′ − 2τξ11′ = 0, (4.24d)

δξ01′ + (α− β)ξ01′ = 0, (4.24e)

Dξ01′ − δξ00′ + τξ00′ = 0, (4.24f)

∆ξ10′ − δξ11′ − 2τξ11′ = 0, (4.24g)

δξ10′ + (α− β)ξ10′ = 0, (4.24h)

δξ10′ + δξ01′ − (α− β)ξ10′ − (α− β)ξ01′ = 0, (4.24i)

Dξ10′ − δξ00′ + τξ00′ = 0. (4.24j)

Equations (4.24e), (4.24h) and (4.24i) can be read as intrinsic equations for ξ01′ and ξ10′ .

Expressing these in terms of the ð and ð operators, observing that the spin-weights of

ξ01′ and ξ10′ are respectively −1 and 1, one has that

ðξ01′ = 0, (4.25a)

ðξ10′ = 0, (4.25b)

ðξ10′ + ðξ01′ = 0. (4.25c)

Substituting conditions (4.23b)-(4.23c) into conditions (4.25a)-(4.25b) above yield the

simple conditions

ð2κ1 = 0, ð2κ1 = 0.

Remark 35. The above expressions indicate that the component κ1 has a very spe-

cific multipolar structure. Note, however, that the ð and ð above are not the ones

corresponding to S2 but of a 2-manifold diffeomorphic to it.



Chapter 4. Killing spinor data on non-expanding horizons 146

Remark 36. Equations (4.25a)-(4.25c) are just the components of the 2-dimensional

Killing vector equation on the bifurcation surface Z. In Section 5.2 of [39], it is shown

that if Z is diffeomorphic to S2 then such a Killing vector must correspond geometrically

to an axial rotation, and so the surface Z possesses an axial isometry. This fact will be

useful later when trying to find an explicit expression for the Killing spinor component

κ1 on Z.

Crucially, one can also show that equations (4.24a)-(4.24d), (4.24f)-(4.24g) and (4.24j)

are implied by equations (4.19a)-(4.19h), the Ricci equations, and the conditions of

Lemmas 2 and 3 (which must be satisfied on Z = H1 ∩H2). Summarising:

Lemma 22. Assume that equations (4.19a)-(4.19h) hold on Z and that, in addition,

ð2κ1 = 0, ð2κ1 = 0, on Z.

Then one has that

SAA′BB′ = 0 on Z.
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4.3.3.6 The Killing vector equation on H1

On H1, equations (4.18a)-(4.18j) reduce to:

Dξ00′ = 0, (4.26a)

∆ξ11′ + (γ + γ)ξ11′ + νξ01′ + νξ10′ = 0, (4.26b)

Dξ11′ + ∆ξ00′ − τξ10′ − τξ01′ − (γ + γ)ξ00′ = 0, (4.26c)

∆ξ01′ − δξ11′ − (γ − γ + µ)ξ01′ + νξ00′ − 2τξ11′ = 0, (4.26d)

δξ01′ + (α− β)ξ01′ = 0, (4.26e)

Dξ01′ − δξ00′ + τξ00′ = 0, (4.26f)

∆ξ10′ − δξ11′ − (γ − γ + µ)ξ10′ + νξ00′ − 2τξ11′ = 0, (4.26g)

δξ10′ + (α− β)ξ10′ = 0, (4.26h)

δξ10′ + δξ01′ + (µ+ µ)ξ00′ − (α− β)ξ10′ − (α− β)ξ01′ = 0, (4.26i)

Dξ10′ − δξ00′ + τξ00′ = 0. (4.26j)

Substituting the components ξ00′ , ξ01′ , ξ10′ and ξ11′ , as given by (4.17a)-(4.17d), into

these relations (being careful not to discard the ∆ derivatives of quantities which vanish

on H1), and using equations (4.21a)-(4.21h) and the Ricci equations, one finds that

(4.26a)-(4.26j) reduce to:

ð2κ1 = κ0(δµ+ µτ), (4.27a)

ð2κ1 = 0, (4.27b)

Ψ2κ0 = 0, (4.27c)

Ψ3κ0 = 0, (4.27d)

Ψ4κ0 + 2Ψ3κ1 − 3Ψ2κ2 = 0. (4.27e)

Remark 37. The conditions (4.27b)-(4.27e) are exactly the conditions of Lemma 2. The

additional condition (4.27a) must be satisfied on all of H1. Note, however, that after
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some manipulations the condition

D
(
ð2κ1 − κ0(δµ+ µτ)

)
= −2δ(Ψ2κ0) + 4βΨ2κ0 = 0

can be shown to hold, where in the last step (4.27c) was used. Accordingly, it suffices

to guarantee (4.27a) on Z as then it is satisfied on the whole of H1 if condition (4.27c)

holds on H1. Furthermore, on Z the spin coefficient µ vanishes, so (4.27a) reduces to

ð2κ1 = 0 on Z. Note that this is one of the conditions appearing in Lemma 22.

This can be summarised in the following lemma:

Lemma 23. Assume that equations (4.21a)-(4.21h) hold on H1, and the conditions of

Lemmas 20 and 22 are satisfied. Then one has that

SAA′BB′ = 0 on H1.

4.3.3.7 The Killing vector equation on H2

On H2, equations (4.18a)-(4.18j) reduce to:

Dξ00′ = 0, (4.28a)

∆ξ11′ = 0, (4.28b)

Dξ11′ + ∆ξ00′ − τξ10′ − τξ01′ = 0, (4.28c)

∆ξ01′ − δξ11′ − 2τξ11′ = 0, (4.28d)

δξ01′ + (α− β)ξ01′ − σξ11′ = 0, (4.28e)

Dξ01′ − δξ00′ + τξ00′ + σξ10′ + ρξ01′ = 0, (4.28f)

∆ξ10′ − δξ11′ − 2τξ11′ = 0, (4.28g)

δξ10′ + (α− β)ξ10′ − σξ11′ = 0, (4.28h)

δξ10′ + δξ01′ − (α− β)ξ10′ − (α− β)ξ01′ − 2ρξ11′ = 0, (4.28i)

Dξ10′ − δξ00′ + τξ00′ + σξ01′ + ρξ10′ = 0. (4.28j)
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Substituting the components ξ00′ , ξ01′ , ξ10′ and ξ11′ , as given by (4.17a)-(4.17d), into

these relations (being careful not to discard the D derivatives of quantities which vanish

on H2), and using equations (4.22a)-(4.22h) and the Ricci equations, one finds that

(4.28a)-(4.28j) reduce to:

ð2κ1 + κ2δσ +
3

2
σδκ2 + ασκ2 = 0, (4.29a)

ð2κ1 + κ2δσ −
1

2
σδκ2 − 3ακ2σ −Ψ1κ2 = 0, (4.29b)

Ψ1κ2 = 0, (4.29c)

Ψ2κ2 = 0, (4.29d)

Ψ0κ2 + 2Ψ1κ1 − 3Ψ2κ0 = 0. (4.29e)

The conditions (4.29a) and (4.29c)-(4.29e) are exactly the conditions of Lemma 3.

The additional condition (4.29b) must be satisfied on all of H2. This can be summarised

in the following lemma:

Lemma 24. Assume that equations (4.22a)-(4.22h) hold on H2, the conditions of Lemma

21 are satisfied, and that in addition,

ð2κ1 + κ2δσ −
1

2
σδκ2 − 3ακ2σ −Ψ1κ2 = 0 on H2.

Then one has that

SAA′BB′ = 0 on H2.

4.4 Solving some of the constraints on Z

Now that some necessary conditions for the vanishing of the zero quantities HA′ABC and

SAA′BB′ on the bifurcated horizon have been found, one can ask whether it is possible

to deduce anything about the spinor κAB from them.
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4.4.1 Determining κ2 on Z

Consider now the restrictions to κ2 on Z. To satisfy the condition Ψ2κ2 = 0 on H2,

applied in Lemma 3, Ψ2κ2 must necessarily vanish on Z ⊂ H2. Consistent with this

condition the following sub-cases can be seen to arise:

i. Assume first that κ2 is nowhere vanishing on Z. In this case Ψ2 must vanish

throughout Z. Note also that in virtue of Table 4-A all the other Weyl spinor components

vanish on Z, and thereby

ΨABCD|Z = 0 .

As shown in Table 4-A, Ψ0 and Ψ1 vanish on H1, and Ψ3 and Ψ4 vanish on H2, respec-

tively. Further, observe that the Bianchi identities imply the following relations on H1:

DΨ2 = 0,

DΨ3 = δΨ2,

DΨ4 = 2αΨ3 + δΨ3.

As Ψ2 vanishes on Z and D is the directional derivative along the geodesics generating

H1, the first of these equations imply that Ψ2 = 0 on H1. By the same argument,

because the right hand side of the second of the above relations has shown to vanish on

H1, it follows that Ψ3 = 0 on H1. In turn, this also implies that Ψ4 = 0 on H1 as a

consequence of the last relation. Therefore, along with the vanishing of Ψ0 and Ψ1 on

H1 all the Weyl spinor components vanish there – that is one has

ΨABCD|H1 = 0 .
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Similarly, the Bianchi identities imply the following relations on H2:

∆Ψ0 = δΨ1 − (4τ + 2β)Ψ1 + 3σΨ2,

∆Ψ1 = δΨ2 − 3τΨ2,

∆Ψ2 = 0.

As Ψ2 vanishes on Z, and ∆ is the directional derivative along the geodesics generating

H2, the third of these equations imply that Ψ2 = 0 on H2. Thus, the right hand side of

the second of the above relations vanishes on H2, and by the same argument it follows

that Ψ1 = 0 on H2. The first relation then implies that Ψ0 = 0 on H2. Therefore, along

with the vanishing of Ψ3 and Ψ4 on H2 all the Weyl spinor components vanish there.

Thus, one has that

ΨABCD|H2 = 0 .

Summarising, the non-vanishing of κ2 on Z implies that all the Weyl spinor components

vanish identically on the union of Z, H1 and H2. This, in the vacuum case, implies

that all components of the Riemann curvature tensor vanish on H1 ∪ H2. It follows

then that the neighbourhood O in D(H1 ∪ H2) spacetime obtained from Theorem 11

is diffeomorphic to a portion of the Minkowski spacetime and the pair intersecting null

hypersurfaces has to contains a bifurcate Killing horizon corresponding to a choice of a

boost Killing vector field.

ii. κ2 vanishes somewhere on Z: It follows from the discussion in the previous

subsection that, unless the spacetime is Minkowski, κ2 must vanish somewhere on Z. It

turns out that that if this is the case, then κ2 must vanish on some open subset of Z.

To see this assume, on contrary, that κ2 vanishes only at isolated points. Choose one

of them, say z ∈ Z with κ2(z) = 0 and a Cauchy sequence {zn} converging to z in the

metric topology of Z ≈ S2. Since κ2 is assumed to vanish only at isolated points to ensure

Ψ2κ2 = 0 on Z, the sequence {Ψ2(zn)} must be the identically zero sequence in R which

by continuity implies that Ψ2(z) = 0. Applying this argument to any of the isolated
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points where κ2 vanishes gives that Ψ2 must be identically zero on Z. As we saw before,

this would imply that the spacetime is Minkowski – in conflict with our assumption that

the geometry is not flat. This, in turn, verifies that whenever κ2 vanishes somewhere on

Z it has to vanish on some (non-empty) open subset of Z.

iii. κ2 vanishes on a (non-empty) open subset of Z. It follows from (4.5) that

(4.20b), which is valid on Z, can be written:

PP−1 ∂z (Pκ2) = −τ P−1 (Pκ2) (4.30)

implying, in turn, that κ2 has to be of the form

κ2 =
1

P
· exp

[
−
∫
τ P
−1
dz + ϕ(z)

]
,

where ϕ(z) is an arbitrary holomorphic function. This, however, in virtue of the non-

vanishing of P , implies that κ2 cannot vanish on an open subset of Z unless it is identi-

cally zero on Z, i.e.

κ2|Z = 0

as intended. Note also that the condition (4.22b) requires that κ2 must vanish along the

generators of H2, and so we must also have

κ2|H2 = 0 .

Summarising, the discussion in this section has shown the following:

Lemma 25. Assume that

Ψ2 κ2 = 0 on Z.

Then, if κ2 is nowhere vanishing on Z, then the solution to the characteristic initial value

problem must be diffeomorphic to the Minkowski spacetime in the domain of dependence

of D(H1∪H2). Otherwise, κ2 = 0 holds on the whole of Z, and then it is also identically
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zero on H2.

4.4.2 Determining κ0 on Z

The analysis of the previous section can be adapted to the component κ0 by noting

that the vanishing of Ψ2κ0 on H1, one of the conditions in Lemma 20, can be deduced

from the vanishing of Ψ2κ0 on Z. Indeed, it can be shown that unless the spacetime

is Minkowski, κ0 must vanish on a non-empty subset of Z. The only difference in the

analysis lies on the analogue of equation (4.30). It follows from (4.5) that (4.20a), which

is valid on Z, can be written as

PP
−1
∂z (Pκ0) = τ P

−1
(Pκ0)

which implies, in turn, that κ0 has to be of the form

κ0 =
1

P
· exp

[∫
τ P−1 dz + ς(z)

]
,

where ς(z) is an arbitrary antiholomorphic function on Z. From here, by an argument

analogous to that used for κ2 one concludes that

κ0|Z = 0

and, moreover, as a consequence of equation (4.21a), that

κ0|H1 = 0.

Summarising:

Lemma 26. Assume that

Ψ2 κ0 = 0 on Z.

If κ0 is nowhere vanishing on Z, then the solution to the characteristic initial value
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problem must be diffeomorphic to the Minkowski spacetime in the domain of dependence

of D(H1 ∪ H2). Otherwise, κ0 = 0 holds on the whole of Z, and it is also identically

zero on H1.

4.4.3 Eliminating redundant conditions on H1 and H2

The first condition in Lemma 20 was

ð2κ1 = 0 on H1.

In theory, one would have to solve this constraint on the whole of H1. However, one can

show that on H1

D(ð2κ1) =− 1

2
δδδκ0 +

3

2
τδδκ0 + δκ0

(
−α2 − 4αβ − β2 +

5

2
δα+

1

2
δβ

)
+ κ0

(
2αβτ − 2αδα− 3βδα− αδβ + δδα

)
.

Note that as κ0 vanishes on H1 (under the assumption that the spacetime is not dif-

feomorphic to Minkowski), the right hand side of this equation also vanishes on H1.

Therefore, if κ1 satisfies ð2κ1 = 0 on Z, then it also satisfies the same condition on

the whole of H1. This was a condition on Z already present from the requirement that

SAA′BB′ |Z = 0. Summarising:

Lemma 27. If κ0|H1 = 0 and ð2κ1|Z = 0, then the condition ð2κ1|H1 = 0 from Lemma

20 is automatically satisfied.

A similar procedure can be performed on H2. The first condition from Lemma 21

was

ð2κ1 + κ2δσ +
3

2
σδκ2 + ασκ2 = 0

which must be satisfied on H2. It has already been shown that necessarily κ2|H2 =

0 if the spacetime is not diffeomorphic to the Minkowski spacetime. Therefore, the
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aforementioned condition reduces to

ð2κ1 = 0 on H2.

Now, one can show that on H2,

∆
(
ð2κ1

)
=− 1

2
δδδκ2 −

3

2
τδδκ2 + δκ2

(
−α2 − αβ + 2β2 − 2δα− 4δβ

)
+ κ2 (−αδα+ βδα− 2αδβ + 2βδβ − δδα− 2δδβ) .

The requirement that κ2 vanishes on H2 means that the right hand side of this equation

also vanishes on H2. Therefore, if κ1 satisfies ð2κ1 = 0 on Z, then it also satisfies the

same condition on the whole of H2. This was a condition on Z already present from the

requirement that SAA′BB′ |Z = 0.

Finally, the condition from Lemma 24 says that

ð2κ1 + κ2δσ −
1

2
σδκ2 − 3ακ2σ −Ψ1κ2 = 0 on H2

which reduces to ð2κ1 = 0 due to the fact that κ2|H2 = 0 when the spacetime is not

diffeomorphic to the Minkowski solution. One can show that on H2

∆
(
ð2κ1

)
= δκ2

(
1

2
δτ − βτ

)
+ κ2

(
−6α2β − 6αββ − 2αδα+ αδα

+5βδα+ 2αδα+ βδα+ 7αδβ + 2βδβ + δδα− δδα− 2δδβ
)

The requirement that κ2 vanishes on H2 means that the right hand side of this equation

also vanishes on H2. So if κ1 satisfies ð2κ1 = 0 on Z, then it also satisfies the same

condition on the whole of H2. This was a condition already present from the requirement

that SAA′BB′ |Z = 0. Summarising, we have
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Lemma 28. If κ2|H2 = 0 and ð2κ1|Z = ð2κ1|Z = 0, then the conditions

(
ð2κ1 + κ2δσ −

1

2
σδκ2 − 3ακ2σ −Ψ1κ2

)
|H2 = 0,(

ð2κ1 + κ2δσ +
3

2
σδκ2 + ασκ2

)
|H2 = 0,

applied in Lemmas 21 and 24, are automatically satisfied.

The only remaining condition on H1 to be considered is from Lemma 20, which

reduces to

(2Ψ3κ1 − 3Ψ2κ2) |H1 = 0 (4.31)

due to the requirement that κ0|H1 = 0. One can also use this requirement to show that

D2 (2Ψ3κ1 − 3Ψ2κ2) |H1 = 0.

More precisely, the right hand side of this expression can be shown to be homogeneous

in κ0 and derivatives of κ0 intrinsic to H1. This can be thought of as a second order

ordinary differential equation along the geodesic generators of H1. Therefore, equation

(4.31) is equivalent to the vanishing of (2Ψ3κ1 − 3Ψ2κ2) and its first D-derivative on Z.

This combination vanishes on Z if κ2|H2 = 0 as it follows from Table 4-A that Ψ3|Z = 0.

The vanishing of the first derivative on Z can be shown to be equivalent to

δ
(
κ31Ψ2

)
|Z = 0 . (4.32)

In a similar way, the only remaining condition on H2 to be analysed is from Lemma 21.

This condition reduces to

(2Ψ1κ1 − 3Ψ2κ0) |H2 = 0 (4.33)

due to the requirement that κ2|H2 = 0. One can also use this requirement to show that

∆2 (2Ψ1κ1 − 3Ψ2κ0) |H2 = 0.
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This time, the right hand side of this can be shown to be homogeneous in κ2 and

derivatives of κ2 intrinsic to H2. This can be thought of as a second order ordinary

differential equation along the geodesic generators of H2. Therefore, equation (4.33) is

equivalent to the vanishing of (2Ψ1κ1 − 3Ψ2κ0) and its first ∆ derivative on Z. This

combination vanishes on Z if κ0|H1 = 0 as, following Table 4-A, one has that Ψ1|Z = 0.

The vanishing of the first derivative on Z can be shown to be equivalent to

δ
(
κ31Ψ2

)
|Z = 0 . (4.34)

Defining the combination in the brackets by

M ≡ κ31Ψ2 (4.35)

it follows from equations (4.32) and (4.34) that M ∈ C is constant on Z.

We can summarise the discussion of this section in the following:

Lemma 29. Assume that κ0|H1 = κ2|H2 = 0. Then M ≡ κ31Ψ2 is constant on Z if and

only if

(2Ψ3κ1 − 3Ψ2κ2) |H1 = 0,

(2Ψ1κ1 − 3Ψ2κ0) |H2 = 0.

Remark 38. Note that

DM|H1 =
3

2
Ψ2κ

2
1

(
−δκ0 + 2ακ0

)
|H1

= 0

where equation DΨ2|H1 = 0 from Table 4-A, equation (4.21f) and the requirement that
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κ0|H1 = 0 have been used. Similarly,

∆M|H2 =
3

2
Ψ2κ

2
1 (−δκ2 − 2(β + τ)κ2) |H2

= 0

where equation ∆Ψ2|H2 = 0 from Table 4-A, equation (4.22e) and the requirement that

κ2|H2 = 0 have been used. Thus, M is constant not merely on Z but on the whole of

H1 ∪ H2. Since the Newman-Penrose reduced system coupled to the wave equation for

κAB, equation (3.3b), is a well-posed hyperbolic system we also have that M is, in fact,

constant throughout the domain of dependence of H1 ∪H2.

4.4.4 Summary

Collecting all the previous lemmas and propositions together one obtains the following:

Theorem 12. Assume that the spacetime – obtained from the characteristic initial value

problem in a neighbourhood O of Z in D(H1∪H2) – is not diffeomorphic to the Minkowski

spacetime. Then the following two statements are equivalent:

(i) Given a spin basis {oA, ιA} on Z, there exists a constant M ∈ C such that

κ0 = 0 , ð2κ1 = ð2κ1 = 0 , κ2 = 0 and κ31Ψ2 = M on Z .

(ii) HA′ABC = 0, SAA′BB′ = 0 everywhere on H1 ∪H2.

Recall that the vanishing of the spinors HA′ABC and SAA′BB′ on H1∪H2 are precisely

the conditions of Proposition 7, which along with the assumptions of Theorem 11 imply

that the Killing spinor candidate κAB is in fact a Killing spinor in the causal future (or

past) of Z. Summarising these observations gives:

Theorem 13. Let (M, g) be a vacuum spacetime satisfying the conditions of Theorem

11. Given a spin basis {oA, ιA} on Z, assume that there exists a constant M ∈ C such
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that the following relations

κ0 = 0, ð2κ1 = ð2κ1 = 0 , κ2 = 0 and κ31Ψ2 = M (4.36a)

hold on Z. Then there exists a neighbourhood O of Z, in D(H1 ∪ H2), such that the

corresponding unique solution κAB to equation (3.3b) is a Killing spinor on O∩D(H1 ∪

H2).

Proof. First, note that HA′ABC and SAA′BB′ vanish on H1 ∪H2 as a result of Theorem

12. Data for κ0, κ1, κ2 on H1 and H2 are determined by their values on Z by (4.21a),

(4.21f), (4.21g), (4.22b), (4.22d) and (4.22e), so Proposition 6 says that there exists a

unique solution to (3.3b) on O ∩ D(H1 ∪ H2). Proposition 7 then says that this field

κAB satisfies HA′ABC = 0 on O ∩D(H1 ∪H2), so is in fact a Killing spinor there.

Remark 39. Condition (4.36a) is a strong restriction on the form of the Weyl spinor

component Ψ2. As already discussed in Remark 27 the Weyl spinor component Ψ2 is

not a basic piece of initial data. In view of (4.11) condition (4.36a), ultimately leads to

restrictions on τ and ζA.

4.5 Enforcing the Hermiticity of the Killing vector

In Proposition 2, the assumption that the spinor ξAA′ constructed from the Killing

spinor κAB is Hermitian is needed in order to show that the spacetime is isometric to

the Kerr solution. Recall that, using equations (4.17a)-(4.17d), the components of ξAA′

can be expressed in terms of derivatives of the Killing spinor components κ0, κ1 and κ2.

Accordingly, the Hermiticity condition leads to further restrictions on the components

κ0, κ1 and κ2. A consequence of the following proposition is that it suffices to impose

restrictions only on the hypersurfaces H1 and H2.

Proposition 8. Let κAB be a solution to equation (3.3b). Then the spinor field ξAA′
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satisfies the wave equation

�ξAA′ = −ΨA
BCDHA′BCD

Proof. Follows by commuting derivatives, and using (3.3b).

An immediate consequence of this result is that

�
(
ξAA′ − ξAA′

)
= ΨA′

B′C′D′HAB′C′D′ −ΨA
BCDHA′BCD.

Assuming that the conditions of Lemmas 20 and 21 are satisfied, HA′ABC vanishes in a

neighbourhood O of Z in D(H1 ∪ H2). Therefore, if the quantity ξAA′ − ξAA′ vanishes

on H1∪H2, there exists a neighbourhood O′ ⊂ O of Z in D(H1∪H2) where ξAA′− ξAA′

vanishes, and thereby the vector ξAA′ is Hermitian there.

4.5.1 Some immediate restrictions

The Hermiticity of the Killing vector ξAA′ is equivalent to the relations

ξ00′ = ξ00′ , ξ01′ = ξ10′ , ξ10′ = ξ01′ , ξ11′ = ξ11′ . (4.37)

These conditions will be imposed on H1 and H2 separately.

Conditions on H1. On H1, using the explicit expressions (4.17a)-(4.17d), the first

condition in (4.37) is trivially satisfied, and the remaining conditions can be shown to

be equivalent to

δ(κ1 + κ1) = 0, (4.38a)

δ(κ1 + κ1) = 0, (4.38b)

∆κ1 + τκ2 real, (4.38c)
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on H1. In fact, it is straightforward to show that on H1

Dδ(κ1 + κ1) = Dδ(κ1 + κ1) = 0 .

Thus, it suffices to impose conditions (4.38a)-(4.38b) only on Z. In other words, the

Hermiticity condition on H1 is equivalent to

Re(κ1) constant on Z,

∆κ1 + τκ2 real on H1.

Conditions on H2. Secondly, on H2, the last condition in (4.37) is trivially satisfied

and the remaining conditions are equivalent to

δ(κ1 + κ1) = 0, (4.39a)

δ(κ1 + κ1) = 0, (4.39b)

Dκ1 real, (4.39c)

on H2. Again, it is straightforward to show that on H2

∆δ(κ1 + κ1) = ∆δ(κ1 + κ1) = 0.

Consequently, it suffices to impose conditions (4.39a)-(4.39b) on Z.

Combining the discussion of the previous two paragraphs one concludes that the

spinor field ξAA′ is Hermitian on H1 ∪H2 if and only if the following conditions hold:

κ1 + κ1 = const on Z, (4.40a)

∆κ1 + τ κ2 real on H1, (4.40b)

Dκ1 real on H2. (4.40c)
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4.5.2 Hermiticity in terms of conditions at Z

In this section it is shown that conditions (4.40b)-(4.40c) can be replaced by restrictions

on Z.

Analysis on H2. Start by considering condition (4.40c). From the transport equation

(4.15b) on H2, and equation (4.19g), it follows that

2∆Dκ1 = δδκ1 + δδκ1 + 4τδκ1 − (3α+ β)δκ1 − (3α+ β)δκ1 + 2Ψ2κ1

on H2. Taking a further ∆-derivative gives

2∆∆Dκ1 = ∆(δδ + δδ)κ1 + 4τ∆δκ1 − (3α+ β)∆δκ1 − (3α+ β)∆δκ1 + 2Ψ2∆κ1.

We can commute the ∆-derivative with the δ and δ derivatives to obtain

2∆∆Dκ1 = (δδ + δδ)∆κ1 + 4τδ∆κ1 − (3α+ β)δ∆κ1 − (3α+ β)δ∆κ1 + 2Ψ2∆κ1.

Note that all the terms on the right are proportional to intrinsic derivatives of ∆κ1,

which by (4.22e) is proportional to κ2 and its intrinsic derivatives on H2. As shown in

subsection 4.4.1, unless our spacetime is the Minkowski solution, the component κ2 must

vanish on H2. It follows then that

∆∆Dκ1 = 0 on H2 .

This is a second order ordinary differential equation along the generators of H2. There-

fore, the requirement that Dκ1 is real on H2 is equivalent to requiring that Dκ1 and

∆Dκ1 are real on Z.

Analysis on H1. An analogous argument applies in the case of condition (4.40b). Take

first a D-derivative along the generators of H1 and use the transport equation (4.14b)
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on H1, along with the assumption that κ0 vanishes in H1 to obtain

2D(∆κ1 + τκ2) = δδκ1 + δδκ1 − (α− β)δκ1 − (α− β)δκ1 + 2Ψ2κ1.

Taking a further D-derivative one gets

2DD(∆κ1 + τκ2) = D(δδ + δδ)κ1 − (α− β)Dδκ1 − (α− β)Dδκ1 + 2Ψ2Dκ1. (4.41)

By commuting the D derivatives with the δ and δ derivatives, it follows that

2DD(∆κ1 + τκ2) =(δδ + δδ)Dκ1 − (3α+ β)δDκ1 − (3α+ β)δDκ1

+
(
δτ + δτ + 4αα+ 2αβ + 2αβ + 2Ψ2

)
Dκ1.

Note that all terms on the right hand side are proportional to δ and δ derivatives of Dκ1,

which by (4.21f) are proportional to κ0 and its δ and δ derivatives on H1. Therefore,

again, unless our spacetime is the Minkowski solution, κ0 = 0 holds on H1. Accordingly

one has that

DD (∆κ1 + τκ2) = 0 on H1.

Again, the latter is a second order ordinary differential equation along the generators of

H1, and so the requirement that ∆κ1 + τκ2 is real on H1 is equivalent to requiring that

∆κ1 + τκ2 and D (∆κ1 + τκ2) are real on Z.

Summarising the analyses on both H1 and H2:

Lemma 30. The spinor field ξAA′ is Hermitian on H1∪H2, and thereby on the domain
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of dependence of H1 ∪H2, if and only if the conditions

κ1 + κ1 = const ,

D(κ1 − κ1) = 0 ,

∆D(κ1 − κ1) = 0 ,

∆(κ1 − κ1) + τ κ2 − τ κ2 = 0,

D (∆(κ1 − κ1) + τ κ2 − τ κ2) = 0 ,

are satisfied on Z.

Note that some of these conditions are redundant. For example, we know that Dκ1

vanishes on Z due to equation (4.21f) and the vanishing of κ0, and so clearly D(κ1−κ1)

also vanishes on Z. A similar argument using equation (4.22e) can be used to show that

∆(κ1 − κ1) + τκ2 − τκ2 vanishes on Z. We can also use the requirement that Re(κ1)

is constant on Z to show that the other two conditions are equivalent. Indeed, we have

that

D (∆(κ1 − κ1) + τκ2 − τκ2) = D∆(κ1 − κ1)− 2τδκ1 + 2τδκ1

= ∆D(κ1 − κ1) + τδ(κ1 − κ1) + τδ(κ1 − κ1)

− 2τδκ1 + 2τδκ1

= ∆D(κ1 − κ1)

where (4.19g), the commutator [∆, D], and the vanishing of Dτ (see Table 4-A), along

with the conditions δκ1 = −δκ1 and δκ1 = −δκ1, have been used.

We compute now ∆Dκ1. Eliminating Dκ2 by using (4.21g) the transport equation

(4.15b) on Z can be seen to reduce to

2∆Dκ1 = (δδ + δδ)κ1 − (3α+ β)δκ1 − (3α+ β)δκ1 − (2α+ 2β)Dκ2 + 2Ψ2κ1

= (δδ + δδ)κ1 − (3α+ β)δκ1 + (α+ 3β)δκ1 + 2Ψ2κ1 .
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Replacing δ and δ derivatives with the ð and ð operators we obtain

2∆Dκ1 = (ðð + ðð)κ1 − (2α+ 2β)ðκ1 + (2α+ 2β)ðκ1 + 2Ψ2κ1 .

The imaginary part of this equation is given by

2∆D(κ1 − κ1) =
(
ðð + ðð

)
(κ1 − κ1) + 2Ψ2κ1 − 2Ψ2κ1

= 2
[(
ððκ1 + 2Ψ2κ1

)
−
(
ððκ1 + 2Ψ2κ1

)]
,

where in the second step the constancy of Re(κ1) on Z, along with the commutator (4.3)

applied to the spin weight zero quantity κ1, was used.

Putting these results together gives the following result:

Lemma 31. The spinorial field ξAA′ is Hermitian on H1 ∪ H2 if and only if on Z the

following conditions are satisfied:

κ1 + κ1 = const , (4.42a)

ððκ1 + 2Ψ2κ1 is real. (4.42b)

Remark 40. The conditions of Lemma 30 involve derivatives off of the bifurcation

surface Z, in comparison to the conditions obtained in Lemma 31 which are purely

intrinsic to Z.

4.5.3 Summary

We can now integrate the conclusions of Lemma 31 with the conditions provided in

Theorems 11 and 13 to give the following characterisation result for the Kerr spacetime:

Theorem 14. Let (M, g) be a vacuum spacetime possessing a pair of null hypersurfaces

H1 and H2 generated by expansion and shear-free geodesically complete null congruences,
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intersecting on a 2-dimensional spacelike hypersurface Z ≡ H1 ∩ H2. Given a spin

basis {oA, ιA} on Z, assume that there exist constants c, M ∈ C such that the following

relations hold on Z:

κ0 = κ2 = 0, (4.43a)

ð2κ1 = ð2κ1 = 0, (4.43b)

κ31Ψ2 = M, (4.43c)

κ1 + κ1 = c, (4.43d)

ððκ1 + 2Ψ2κ1 ∈ R (4.43e)

where κ0, κ1, κ2 are the basis components of a spinor κAB with respect to the spin basis

{oAιA}. Then, there exist two complex constants c and l such that

H2 = −l(c− χ)4

in a neighbourhood O of Z in D(H1 ∩H2), where H2 = HabHab is the contraction of the

self-dual Killing form with itself (see section 2.2.4 for the full definition) and χ is the

Ernst potential (see section 2.2.5.1). Furthermore, if c = 1 and l is real and positive,

then (O, g) is locally isometric to a member of the Kerr family of spacetimes.

Proof. Theorem 11 guarantees the existence of a unique metric in the domain of depen-

dence of the intersecting null hypersurfaces, once initial data is prescribed for the induced

metric and connection on Z, and so confirms the well-posedness of the characteristic

problem. Due to Theorem 13 and Lemma 31, the conditions (4.43a)-(4.43e) guarantee

the existence of a Killing spinor κAB in a neighbourhood O of Z in D(H1 ∩ H2), and

that the associated Killing vector (defined by equation (2.5)) is Hermitian. The relation

between the self-dual Killing form and the Ernst potential, and the local isometry to a

member of the Kerr family once the constants c, l are fixed, follows from Proposition

2.
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Remark 41. In Chapter 3, the asymptotic flatness of the spacetime is used to set

the constants c, l to their required values; however, in the characteristic framework this

assumption is no longer available. The result above requires that these constants be set

manually – this is not physically motivated, but nevertheless must to included to obtain

the characterisation. This illustrates the essential nature of the asymptotic flatness

assumption for identifying the Kerr spacetime.

4.6 Determining κ1 on Z

Necessary conditions for the existence of a Killing spinor and the Hermiticity of the asso-

ciated Killing vector have now been provided. Following on from these, the implications

of these conditions can be investigated, allowing one to give a explicit formula for κ1 and

and restriction on the geometry of the bifurcation surface Z. This section proceeds by

solving the conditions

ð2κ1 = 0 , ð̄2κ1 = 0 .

4.6.1 Solving the conditions ð2κ1 = 0 and ð̄2κ1 = 0

Consider first the vanishing of ð2κ1. As ðκ1 is of spin-weight 1, in virtue of (4.5), we

get from

ð2κ1 = 0

that

P ðκ1 = f(z) , (4.44)

where f(z) is (for the moment) an arbitrary anti-holomorphic function in Z.

Applying once more (4.5) the last relation can also be written as

PP ∂zκ1 = f(z) . (4.45)
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As argued in Remark 36, there exists an axial Killing vector field on Z, so it is reasonable

to assume without loss of generality that all the geometric quantities including |P | and

κ1 depend only on the modulus |z| of z, and not on the ratio z/z.

Then, by using the fact that ∂|z|/∂z = z/(2 |z|) we get from (4.45) that

[
(2 |z|)−1 |P |2 ∂|z|κ1

]
z = f(z) , (4.46)

i.e. there should exist a (possibly) complex constant d∗ ∈ C such that

(2 |z|)−1 |P |2 ∂|z|κ1 = d∗ and f(z) = d∗ z . (4.47)

A completely analogous argument concludes from the vanishing of ð2κ1 that

P ðκ1 = g(z) , (4.48)

where g(z) is (for the moment) an arbitrary holomorphic function in Z. This, along with

∂|z|/∂z = z/(2 |z|), gives as above

[
(2 |z|)−1 |P |2 ∂|z|κ1

]
z = g(z) , (4.49)

thereby with the same constant d∗ ∈ C the relations

(2 |z|)−1 |P |2 ∂|z|κ1 = d∗ and g(z) = d∗ z . (4.50)

can be seen to hold.

The first relation in (4.49) or in (4.50) can then be solved for κ1 as

κ1 = 2 d∗
∫
|z|
|P |2

d|z|+ c , (4.51)
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where c is a constant of integration.

Note that in virtue of (4.42a) κ1 must have the form

κ1 = c+ i χ(|z|) , (4.52)

where c is a real constant and χ(|z|) is a real function. Thereby, as the integral in (4.51)

is real, d∗ is purely imaginary, i.e. there exists a real number d ∈ R such that 2 d∗ = i d

and, in turn,

κ1 = c+ id

∫
|z|
|P |2

d|z| . (4.53)

Note that given an arbitrary 2-metric on Z, the complex function P can be calculated,

and from this the exact form of κ1 satisfying the equations ð2κ1 = ð̄2κ1 = 0 can be

determined. Therefore, the further restrictions placed on κ1 by enforcing the Hermiticity

of the Killing vector must also enforce restrictions on the value of P .

4.6.2 Deriving and solving further conditions on κ1

Start by the observation that, in virtue of (4.42b), there must exist (a spin-weight zero)

real function ϕ on Z such that

ððκ1 + 2 Ψ2 κ1 = ϕ (4.54)

Taking then the complex conjugate of this relation, using that κ1 is of spin-weight zero

and replacing the complex conjugate of κ1 by applying (4.52), the following two relations

can be seen to hold

2ϕ = (κ1 + κ1) (Ψ2 + Ψ2) + (κ1 − κ1) (Ψ2 −Ψ2)

= 2c (Ψ2 + Ψ2) + 2i χ (Ψ2 −Ψ2) , (4.55)

2 ððκ1 = 2ð ðκ1 = 2κ1 Ψ2 − 2κ1 Ψ2 = −2
[
c (Ψ2 −Ψ2) + i χ (Ψ2 + Ψ2)

]
. (4.56)
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Note that (4.56) can also be written as

ððκ1 =
M

κ21
− M

κ21
. (4.57)

As ðκ1 is of spin-weight 1, in virtue of (4.5), we get that

ð ðκ1 = PP ∂z(P
−1ðκ1) = |P |2 ∂z

(
P−1 [P ∂zκ1]

)
= |P |2 ∂z∂zκ1 .

As ∂|z|/∂z = z/(2 |z|) we also have

∂z κ1 =
1

2

z

|z|
∂|z| κ1

and

∂z ∂z κ1 =
1

4

[
∂2|z| κ1 +

1

|z|
∂|z| κ1

]
.

Using then (4.51) it follows then that

∂|z| κ1 = i d
|z|
|P |2

and

∂2|z| κ1 =
i d

|P |2
[
1− |z| ∂|z| ln(|P |2)

]
.

Therefore, the second order mixed eth derivative of κ1 can be written as

ð ðκ1 = |P |2 ∂z∂zκ1 =
i d

4

[
2− |z| ∂|z| ln(|P |2)

]
.

In virtue of (4.57), this can be reformulated as an ”additional” constraint on the confor-

mal factor |P |2:

id

4

(
2− |z|∂|z| ln |P |2

)
=

M(
c− id

∫ |z|
|P |2 d|z|

)2 − M(
c+ id

∫ |z|
|P |2 d|z|

)2 .
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In other words, the requirement that the Killing vector ξ is Hermitian on H1 ∪H2 gives

constraints on the allowed geometry of the bifurcation surface Z. This equation can be

thought of as an integrability condition on the complex function P for there to exist a

solution to the system of equations (4.43a)-(4.43e).

4.7 Identifying the Schwarzschild spacetime

Equation (4.53) provides an explicit expression for κ1 on Z in terms of the complex factor

P ; this factor is determined by the conformal relation between the induced metric σ on

Z and the round metric on S2. In particular, by making the further assumption that σ is

a constant multiple of the round metric (i.e. the round metric on a sphere of radius R),

we can hope to be able to single out the Schwarzschild spacetime from the larger class of

spacetimes satisfying the conditions of Theorem 13 and Lemma 31. The surface Z in the

exact Schwarzschild spacetime of mass M is metrically S2 with radius R = 2M ; this can

be seen by writing the Schwarzschild metric in Kruskal-Szekeres coordinates (U, V, θ, φ),

at which point the radius of the bifurcation sphere (given by the surface {U = V = 0})

can be simply read off.

By assuming that the metric induced on Z is

σab dxa dxb = −R2
(
dθ2 + sin2 θ dφ2

)
with radius R, equation (4.15.116) of [45] gives the exact form for P :

P =
1 + zz

R
√

2
,

and equation (4.15.113) gives the relationship between the complex coordinate function

z and the standard spherical polar coordinates on the sphere:

z = eiφ cot
θ

2
, (4.58)
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Using this, the explicit formula for κ1 in equation (4.53) can be simplified:

κ1 = c+ idR2

∫
2|z|

(1 + |z|2)2
d|z|

= c+ idR2

(
b− 1

1 + |z|2

)

where b is a real constant of integration. Substituting in the form of z given in (4.58)

and simplifying,

κ1 = c+ idR2

(
b− 1

2

)
+

1

2
idR2 cos θ

= c̃+ id̃ cos θ

where the constants have been combined into c̃ ∈ C and d̃ ∈ R.

The requirement (4.35) needed for Theorem 13 now gives an explicit form for the

Weyl scalar Ψ2:

Ψ2 =
M(

c̃+ id̃ cos θ
)3 .

However, as remarked in Section 4.2.1.1, the Gaussian curvature of Z is κG = −2 Re(Ψ2);

this must be equal to the Gaussian curvature of a metric sphere of radius R = 2M , i.e.

κG = − 1
4M2 . The only way for this to hold identically is for the constant d̃ to vanish,

meaning on Z

κ1 = c̃.

Now, consider condition (4.54), itself a consequence of Lemma 31. The constancy of

κ1 means that this condition can be written as

M =
1

2
ϕc̃2 (4.59)

for some real function ϕ on Z. Recall from equation (2.41) the definition of l (the

proportionality constant linking the norm of the self-dual Killing form to the Ernst
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potential) in terms of M:

l =
64

81

1

M2

=
256

81

1

ϕ2c̃4
.

Remark 42. As ϕ is a real function on Z (and is, in fact, constant on Z due to the

constancy of both M and κ1), l is real and positive if and only if c̃ is either real or

pure imaginary. However, from Proposition 2, we know that to identify a member of

the Kerr family (in this case, the Schwarzschild metric), this constant must be real and

positive. In other words, there exists a large class of solutions to the conditions given in

Theorem 14, with metrically spherical bifurcation surfaces, that are not isometric to a

member of the Kerr family (and in particular the Schwarzschild solution). Therefore, in

order to single out the Schwarzschild solution, further conditions must be imposed. This

calculation illustrates the essential nature of the asymptotic flatness assumption used in

Theorem 3 and the difficulty in finding physically motivated local conditions to achieve

the same result.

4.8 Conclusions

The analysis in this chapter identifies a set of conditions (given in (4.43a)-(4.43e)) that

must be satisfied on the bifurcation surface Z of the non-expanding horizon structure

H1 ∩ H2, in order to guarantee (relying on the results of Rendall [48]) the existence of

a Killing spinor in a region O, the intersection of a neighbourhood of Z with the future

development of H1 ∪ H2. A result due to Luk [38] has extended the region of existence

of a unique solution to the Einstein equations to a neighbourhood of the horizons H1

and H2, as long as the constraint equations are satisfied there. One would expect to

find that the region of existence of the Killing spinor can also be extended in this way.



Chapter 4. Killing spinor data on non-expanding horizons 174

Furthermore, by extending the region of existence to the length of the horizon one can

investigate the behaviour of the relevant fields in the infinite affine parameter limit;

considering the set-up in a conformal setting may be useful for studying this.

However, although the class of spacetimes referred to as ‘distorted’ black holes is

known to include the Kerr family, it has been illustrated here that conditions for the

existence of a Killing spinor in the spacetime development of the characteristic initial data

are insufficient to single out the Kerr family from this larger class. Whereas asymptotic

flatness could be used in previous chapters, here there is no obvious physically motivated

way to fix the additional local conditions required to identify the Kerr family. A potential

solution could be to investigate the behaviour of the relevant fields in the infinite affine

parameter limit along the generators of the horizons, as previously mentioned.

Another avenue of investigation would be determining whether the existence result

can be extended to a full neighbourhood of the horizon, rather than being restricted to

the future development. Theorem 14 is a Killing spinor analogue of the rigidity results

in [27], which themselves were extended to a full neighbourhood in [2]. It would be very

interesting to see whether the ideas from [2] can be adapted for the results laid out in

this chapter, to obtain a statement in the domain of outer communication.

This analysis has considered only for vacuum case, but in principle it could be

extended fairly straightforwardly to electrovacuum spacetimes, yielding an existence

result for a Killing spinor in a neighbourhood of the horizons and helping to characterise

the Kerr-Newman solution via Proposition 3. However, this generalisation would be

expected to suffer from the same problem as the vacuum case, namely that the required

constants must be set locally rather than using an asymptotic condition.
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Conclusions

In this thesis, the use of Killing spinors as a valuable construction for characterising

Kerr and Kerr-Newman spacetimes has been explored. The existence of a Killing spinor

corresponds to the presence of a ‘hidden symmetry’ of the underlying spacetime, so the

sufficiency of this condition (along with asymptotic conditions) is evidence that this

symmetry is a special feature of the Kerr-Newman family, singling it out from the larger

class of spacetimes with these asymptotic properties. In fact, the required asymptotic

conditions are not particularly restrictive - a physically motivated, spatially isolated black

hole (like those observed in our universe) would be expected to fulfil these requirements.

In Chapter 2, it was shown that the hypotheses of characterisations due to Mars (for

the Kerr family) and Wong (for the Kerr-Newman family) can be fulfilled by the existence

of a Killing spinor on the spacetime. This takes the form of a local result requiring certain

constants to be fixed manually, and global results without this requirement, utilising the

assumption of asymptotic flatness. The lack of a simple, physically motivated way of

setting these constants without the asymptotic flatness condition suggests that it is an

essential feature of Kerr-Newman characterisation results.

In Chapter 3, the justification of the importance of Killing spinors was put to use.

In an analogous procedure to the derivation of the KID equations (see [10]), conditions

175
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for a symmetric 2-spinor κAB can be found on an initial data set which guarantees the

existence of a Killing spinor on the resulting unique development of the initial data.

This is done by constructing a set of wave equations for a set of ‘zero quantities’ which

vanish in the presence of a true Killing spinor; the requirement of trivial initial data for

this system gave the desired conditions. A key feature is the fact that these conditions

are overdetermined, and so for arbitrary initial data sets do not admit solutions. By

extending this system to an elliptic system, which always admits a unique solution for

initial data with asymptotic conditions matching those of the Kerr-Newman spacetime,

an approximate Killing spinor can be constructed on the initial data set. The fact that

this candidate spinor can be found for any initial data set (with suitable asymptotic

behaviour) is the key criterion in this analysis, allowing the geometric invariant con-

structed as the norm of the Killing spinor initial data (under a suitable inner product)

to be interpreted as a measure of how much the Killing spinor initial data conditions are

violated. For example, to study the behaviour of a perturbed Kerr-Newman black hole,

one could calculate this invariant at successive time slices of the evolved spacetime; if the

spacetime ‘settles’ to the exact Kerr-Newman solution, one could conjecture that it will

decay to zero. In order for this to be useful in numerical studies, further properties of

the constructed geometric invariant need to be established: in particular, its behaviour

under time evolution. As mentioned in section 3.8, in order to do this an evolution

equation for the approximate Killing spinor must be found which respects the elliptic

approximate Killing spinor equation on each leaf of the foliation. If such an equation

can be found, then its form would determine the behaviour of the approximate spinor

under evolution and provide details of the behaviour of the geometric invariant also.

In Chapter 4, the discussion was moved from spacelike initial data sets to the char-

acteristic problem. The motivation for doing so was provided by the construction of

so-called ‘distorted black holes’, possessing a non-expanding and shear free bifurcate

horizon structure. In a similar way to the case of spacelike initial data, conditions on

the horizon structure can be found which corresponded to trivial initial data for a sys-
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tem of wave equations for a set of zero-quantities. A key observation in this case is the

fact that these conditions can be restricted to the bifurcation surface Z, rather than

being required on the extended horizon structure. Furthermore, the Hermiticity of the

associated Killing vector can also be guaranteed by conditions only on the bifurcation

surface; in particular, all of the assumptions of Proposition 2 can be fulfilled by condi-

tions only on Z. However, it is shown that these conditions are insufficient to fix the

constants of Proposition 2, in order to single out the Kerr spacetime specifically. The

conclusion reached is that the class of ‘distorted’ black hole spacetimes includes but is

not exhausted by the Kerr family. Further restrictions on the definition of a ‘distorted’

black hole would be required to do this; at this moment, it is unclear if there exists a

physically motivated, or even mathematically satisfying, way to do this.
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[3] Lars Andersson, Thomas Bäckdahl, and Pieter Blue. Spin geometry and conserva-

tion laws in the Kerr spacetime. In L. Bieri, editor, One hundred years of general

relativity (Surveys in Differential Geometry, 20), volume 20, pages 183–226. Inter-

national Press, Boston, 2015. Author: Yau , S.-T.
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[28] Alfonso Garćıa-Parrado Gómez-Lobo and Juan A. Valiente Kroon. Killing spinor

initial data sets. Journal of Geometry and Physics, 58(9):1186 – 1202, 2008.

[29] Stephen Hawking and George Ellis. The large scale structure of space-time. 1973.

[30] Lane P. Hughston, Roger Penrose, Paul Sommers, and Martin Walker. On a

quadratic first integral for the charged particle orbits in the charged Kerr solution.

Communications in Mathematical Physics, 27(4):303–308, Dec 1972.

[31] Lane P. Hughston and Paul Sommers. Spacetimes with Killing tensors. Commu-

nications in Mathematical Physics, 32(2):147–152, Jun 1973.

[32] Lane P. Hughston and Paul Sommers. The symmetries of Kerr black holes. Com-

munications in Mathematical Physics, 33(2):129–133, Jun 1973.

[33] Alexandru D. Ionescu and Sergiu Klainerman. Rigidity results in general relativity:

a review. Surveys in Differential Geometry, 20:123–156, 2015.

[34] N. Kamran. Killing-Yano tensors and their role in the separation of variables. In

& B. O. J. Tupper edited by A. Coley, C. Dyer, editor, Proceedings of the sec-



Chapter 5. Conclusions 181

ond Canadian conference on general relativity and relativistic astrophysics. World

Scientific, 1987.

[35] J. Kánnár. On the existence of C∞ solutions to the asymptotic characteristic initial

value problem in general relativity. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 452(1947):945–952, 1996.

[36] Roy P. Kerr. Gravitational field of a spinning mass as an example of algebraically

special metrics. Phys. Rev. Lett., 11:237–238, Sep 1963.

[37] Sergiu Klainerman and Jeremie Szeftel. Global nonlinear stability of Schwarzschild

spacetime under polarized perturbations. Available online at https: // arxiv.

org/ 1711. 07597 , 2017.

[38] Jonathan Luk. On the local existence for the characteristic initial value problem

in general relativity. International Mathematics Research Notices, 2012(20):4625–

4678, 2012.

[39] Robert M. Wald. Quantum field theory in curved spacetime and black hole ther-

modynamics. 01 1994.

[40] Marc Mars. A spacetime characterization of the Kerr metric. Classical and Quan-

tum Gravity, 16(7):2507, 1999.

[41] Marc Mars. Uniqueness properties of the Kerr metric. Classical and Quantum

Gravity, 17(16):3353, 2000.
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[47] István Rácz. Stationary black holes as holographs II. Classical and Quantum

https://arxiv.org/1711.07597
https://arxiv.org/1711.07597


Chapter 5. Conclusions 182

Gravity, 31(3):035006, 2014.

[48] Alan D. Rendall. Reduction of the characteristic initial value problem to the

Cauchy problem and its applications to the Einstein equations. Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

427(1872):221–239, 1990.

[49] Alan D. Rendall. Theorems on existence and global dynamics for the Einstein

equations. Living Reviews in Relativity, 5(1):6, Sep 2002.

[50] Alan D. Rendall. Partial Differential Equations in General Relativity. Oxford

University Press, 2008.

[51] H. Ringström. The Cauchy Problem in General Relativity. ESI lectures in mathe-

matics and physics. European Mathematical Society, 2009.

[52] Karl Schwarzschild. On the gravitational field of a mass point according to Ein-

stein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1916:189–

196, 1916.

[53] Walter Simon. The multipole expansion of stationary Einstein-Maxwell fields.

Journal of Mathematical Physics, 25(4):1035–1038, 1984.

[54] Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, and

Eduard Herlt. Exact Solutions of Einstein’s Field Equations. Cambridge Mono-

graphs on Mathematical Physics. Cambridge University Press, 2 edition, 2003.

[55] John Stewart. Advanced general relativity. 1991.

[56] Willie W. Wong. A space-time characterization of the Kerr–Newman metric.
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